MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013
FIRST YEAR, FIRST SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3138: RIEMANNIAN GEOMETRY

DATE: APRIL 2013
TIME: $2 \underset{2}{\mathbf{1}} \mathrm{HOURS}$
INSTRUCTIONS: Answer questions one and any other two questions

QUESTION ONE - (30 MARKS)

a) Prove that a cylindrical coordinate system is orthogonal.
(5 Marks)
b) Represent the vector $\vec{A}=2 i-2 x j+y k$ in cylindrical coordinates. Thus determine A_{ρ}, A_{\emptyset} and A_{z}.
(6 Marks)
c) Prove that;
i. $\quad \frac{d}{d t}\left(e_{\rho}\right)=\dot{\emptyset} e_{\varnothing}$
ii. $\quad \frac{d}{d t}\left(e_{\varnothing}\right)=\dot{\emptyset} e_{\rho}$

Where dots denote differentiation with respect to time t .
(6 Marks)
d) Express the velocity \vec{v} and acceleration \vec{a} of a particle in cylindrical coordinates.
(7 Marks)
e) Write the law of transformation for the tensors:

$$
\begin{align*}
\text { i. } & A_{j k}^{i} \tag{3Marks}\\
\text { ii. } & B_{i j k}^{m n}
\end{align*}
$$

QUESTION TWO (20 MARKS)

a) Find the unit vectors $e_{r}, e_{\theta}, e_{\emptyset}$ of spherical coordinate system in terms of $\mathrm{i}, \mathrm{j}, \mathrm{k}$.
b) Prove that a spherical coordinate system is orthogonal.
(5 Marks)
c) Solve for $\mathrm{i}, \mathrm{j}, \mathrm{k}$ in terms of e_{r}, e_{θ} and e_{\emptyset}.
(5 Marks)
d) Represent the vector $\vec{A}=2 y i-2 z j+3 x k$ in a spherical coordinates and determine A_{r}, A_{θ} and A_{\varnothing}.

QUESTION THREE (20 MARKS)

a) Determine whether $\frac{\partial \emptyset\left(x^{1}, x^{2}, \ldots, x^{N}\right.}{\partial x^{k}}$ is tensor. If so determine whether it is contravariant or covariant and give its rank.
(8 Marks)
b) Show that $\frac{\partial A_{p}}{d x^{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
c) If $A_{r}^{p q}$ and $B_{r}^{p q}$ are tensors, prove that their sum and difference are tensors.(6 Marks)

QUESTION FOUR (20 MARKS)

Determine the metric tensor in;
a) Cylindrical coordinates.
b) Spherical coordinates.

