

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 3138: RIEMANNIAN GEOMETRY

DATE: APRIL 2013

TIME: $2\frac{1}{2}$ HOURS

INSTRUCTIONS: Answer questions one and any other two questions

QUESTION ONE - (30 MARKS)

- a) Prove that a cylindrical coordinate system is orthogonal. (5 Marks)
- b) Represent the vector $\vec{A} = 2i 2xj + yk$ in cylindrical coordinates. Thus determine A_{ρ}, A_{\emptyset} and A_z . (6 Marks)
- c) Prove that;
 - i. $\frac{d}{dt}(e_{\rho}) = \dot{\phi} e_{\phi}$ ii. $\frac{d}{dt}(e_{\phi}) = \dot{\phi} e_{\rho}$

Where dots denote differentiation with respect to time t. (6 Marks)

d) Express the velocity \vec{v} and acceleration \vec{a} of a particle in cylindrical coordinates.

- e) Write the law of transformation for the tensors:
 - i. A_{jk}^i (3 Marks)ii. B_{ijk}^{mn} (3 Marks)

QUESTION TWO (20 MARKS)

- a) Find the unit vectors e_r , e_{θ} , e_{ϕ} of spherical coordinate system in terms of i,j,k.
- b) Prove that a spherical coordinate system is orthogonal.(5 Marks)(5 Marks)

(7 Marks)

- c) Solve for i,j,k in terms of e_r , e_{θ} and e_{ϕ} .. (5 Marks)
- d) Represent the vector $\vec{A} = 2yi 2zj + 3xk$ in a spherical coordinates and determine A_r, A_θ and A_{ϕ} . (5 Marks)

QUESTION THREE (20 MARKS)

- a) Determine whether $\frac{\partial \phi(x^1, x^2, ..., x^N)}{\partial x^k}$ is tensor. If so determine whether it is contravariant or covariant and give its rank. (8 Marks)
- b) Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one.

(6 Marks)

c) If A_r^{pq} and B_r^{pq} are tensors, prove that their sum and difference are tensors.(6 Marks)

QUESTION FOUR (20 MARKS)

Determine the metric tensor in;

- a) Cylindrical coordinates. (10 Ma
- b) Spherical coordinates.

(10 Marks) (10 Marks)