MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF
SCIENCE IN APPLIED MATHEMATICS
SMA 3137: NUMERICAL ANALYSIS II
DATE: AUGUST 2013
TIME: 3 HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - (30 MARKS)

(a) Perform two iterations of Picard's method to find an approximate solution of the initial value problem

$$
\begin{equation*}
y^{\prime}=x+y^{2}, y(0)=1 \tag{6Marks}
\end{equation*}
$$

(b) Derive the expression for the error in the 3-point Gauss-Hermite formula.
(c) Solve the Poisson's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=8 x^{2} y^{2}$ for square mesh of the figure given below with $u(x, y)=0$ on the boundary and mesh length, $h=1$
(d) Define a, b, and c such that the formula
$\int_{0}^{h} f(x) d x=h\left\{a f(0)+b f\left(\frac{1}{3}\right)+c f(h)\right\}$ is exact for polynomials of as high order as possible. Find the truncation error.

QUESTION TWO - (20 MARKS)

(a) Find the solution $y(0.1)$ of the initial value problem $y^{\prime}=-2 t y^{2}, y(0)=1$ with $h=0.1$, using Runge-Kutta method of order four.
(5 Marks)
(b) Find the values of $u(x, t)$ satisfying the parabolic equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(0, t)=0=u(8, t)$ and $u(x, 0)=4 x-\frac{1}{2} x^{2}$ at the points: $x=i: i=0,1,2, \ldots 7$ and $t=\frac{1}{8} j: j=0,1,2$.

QUESTION THREE - (20 MARKS)

(a) Use Runge-Kutta method to find $y(0.2)$ for the equation $\frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}-y$, given that $y=1, \frac{d y}{d x}=0$ when $x=0$.
(b) (i) Using the method of undetermined coefficients, find the nodes and the weights of the quandrature formula.

$$
\int_{0}^{\infty} e^{-x} f(x) d x=\lambda_{0} f\left(x_{0}\right)+\lambda_{1} f\left(x_{1}\right)
$$

(ii) Evaluate the integral $\int_{0}^{\infty} \frac{e^{-x}}{1+x^{2}} d x$ using the method derived in (i).
(10 Marks)

QUESTION FOUR- (20 MARKS)

(a) Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ with conditions $u(0, t)=u(1, t)=0, u(x, 0)=\frac{1}{2} x(1-x)$ and $u(x, 0)=0$, taking $h=k=0.1$ for $0 \leq t \leq 0.4$.
(b) Find the quandrature formula $\int_{0}^{1} \frac{f(x)}{\sqrt{x(1-x)}} d x=\propto_{1} f(0)+\propto_{2} f\left(\frac{1}{2}\right)+\propto_{3} f(1)$ which is exact for polynomial of highest possible degree. Use the formula to evaluate $\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}$

