

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION AND ACTUARIAL SCIENCE

3RD YEAR 2ND SEMESTER 2016/2017 ACADEMIC YEAR MAIN CAMPUS

COURSE CODE: SMA 304

COURSE TITLE: GROUP THEORY

EXAM VENUE: AH

STREAM: BED AND ACT SCIENCE

DATE: 21/04/17

EXAM SESSION: 11.30 – 1.30pm

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a) Show that if G is a group then, the identity element $e \in G$ is unique. (4marks)

Q +8 = Q

- b) State and prove the cancellation law. (7marks)
- c) i) What is meant by the left and right coset of a group G. (2marks) ii) Consider the multiplicative group $G = \{1, -1, i, -i\}$. Let $H = \{1, -1\}$ be its groups. Find all the right and the left coset of H under G and hence determine whether G is abelian. (5marks)
- d) i) Distinguish between the order of a group and a cyclic group. (2marks)
 ii) Let $G = \{0,1,2,3\}$ be a group of integers modulo4 under addition. Find the generators of the group G and hence determine whether G is cyclic. (6marks)
- e) Prove that the intersection of two subgroups H and K of a group G is a subgroup. (6marks)

QUESTION TWO (20 MARKS)

- (2 marks)
 - ii) Let G be a group. Show that every subgroup of Abelian group is a normal subgroup.
- Given the permutations $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$
 - i) Express α and β in disjoint cycle form. (4marks)
 - ii) Determine β^{-1} (2marks)
 - iii) Find $\alpha^2 \beta$ in cycle disjoint and hence determine its length. (5marks)
 - iv) Determine whether $\alpha^2 \beta$ it's an even or odd (2marks)

QUESTION THREE (20 MARKS)

- a) Draw the multiplication table for the set of $(\mathbb{Z}_7 \setminus \{0\}, \times)$ and determine whether it forms an abelian group. (10marks)
- b) i) Define a subgroup of a group. (2marks)
 - ii) Prove that a nonempty subset H of a group G is a subgroup if and only if $ab^{-1} \in H$ for all $a, b \in H$. (5 marks)
- c) Let $\phi: G \to H$ be a homomorphism. Show that if $a \in G$, then $\phi(a^{-1}) = \phi(a)^{-1}$.

inverse (3marks)

Yarb $\stackrel{e}{=} e \cdot a = a$ Identity $a \cdot a' = e$

QUESTION FOUR (20 MARKS)

a) i) Define the center of a group (2marks)

12-4=8-4=4

ii) Show that the centre Z(G) of a group G is a subgroup of G. (5marks) iii) Name two trivial subgroups. (2marks) b) Prove that the number of elements in the symmetric group S_n is n!(5marks) c) The binary operation * and composite \circ on the set of real numbers are defined by a *b = |a - b| $a \circ b = a$ i) Show that * is commutative but not associative (3marks) ii) Composite • is associative but not commutative. (3marks)

QUESTION FIVE (20 MARKS)

a) i) Define the quotient group. (2marks) ii) State and prove Lagrange's theorem.

(8marks) b) Prove that if $\varphi: G \to H$ is a homomorphism of a group and e is the identity of G, then

 φ is a monomorphism if and only if $\ker \varphi = \{e\}$. (5 mark c) Let H be a subgroup of the group G and let $\in G$. Prove that Ha = Hb if and only if (5marks)