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 QUESTION ONE {30 Marks]
| a) Cil\;é the formal definition of a proper subset
(?mks)
b} Let A and B be two n':ln-.emp'ty sets then prove that
AU B) = n{A} +~ n{B) ~n{d N B}
(5mks]

CHIA={2.80,cy}and B - 11359, v}, determine 244

(Zmks)
d) Let A, B and & he non empty sets, show thavif 21 C Band 5 C ', then AZ C.

(3mks]
&) Let X and ¥ be two open sets. Show that their intersection is opern.

{bimnks]
1y Given that X o {205 0) . decermaine its cardmalizy and the power set of X,

[4mks)

g) Prove that {A U B)° = 47 B¢

(8mks)
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QUESTION TWO [20 Marks] -

(a) Given a point 75 £ X and a real number r = 0 define the following:

(i) open ball
(if) Closed ball
(iii) Open Set

(ili) closed Set

(b) Given that (Q is a set such that () = {{x.y, 2, w)jw < 2} Show that it 15 open.

T

(c) Let K beaser. Show that K s closed 1T K*© 15 open.

QUESTION THREE [20 Marks]

() Define the following

(i) an upper bound of a subset S of a partially ordered set {F. <)

(i1) infimwm a subset § of & paruzlly ordered sel {F, £)

(b) 7 N s aser such a N - {1 —1:n € M} Find the
Upper bound
lower bound
mfimum
SUPremim

(c) Let & be a bounded see. 1l the infimam does exist, show that 1% s unique.

(d) Find the
o 2= 42
e o
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{ Fmks)

{Bmks)

{Tmks)

(2mks)

{3mks)

{5mks)




QUESTION FOUR [20 Marks]

{a) Dehne . ratonal number.

'

[2mky)
(b) Show that thers 1s no rational aumber wheosa square is S.
{6mks)
(c) By zhowing all the axioms of a field. determine whather the se: of rational numbers is a feld.
{12mks)

QUESTION FIVE [20 Marks]
(a) Define a4 continuons §- X = ¥ on E.
{2mks)
(b) Let firi - T — 35 Prove that f s unifarmly continuous on =
1d3mks)

(c} Find the inverse function of

{omks)

(d) Let firy =1 =3z — 4 and g{z) = 1+ 2. Show that (o g){x] # (g e )z}

(Smks)
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