

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2015/2016**

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

MAIN CAMPUS

SMA 804: FUNCTIONAL ANALYSIS II

Date: 7th May, 2016

Time: 9.00 - 12.00 noon

INSTRUCTIONS:

Answer ANY THREE questions.

ISO 9001:2008 CERTIFIED

QUESTION ONE (20 MARKS)

(a) Let (X, ||·||) be a Banach space. Show that a family {xα : α ∈ Λ} of elements of X is summable if and only if for any real ε > 0 there exists a finite set Π_ε ⊂ Λ such that

 $\left|\sum_{\alpha \in \Gamma} x_{\alpha}\right| < \epsilon$

whenever Γ is a finite subset of Λ such that $\Gamma \cap \Pi_c = \emptyset$.

[8 marks]

(b) Let (X, ||·||) be a normed linear space and T ∈ B(X). Show that the sequence

 $\left(\|T^n\|_{\frac{1}{n}}^{\frac{1}{n}}\right)_{n=1}^{\infty}$

converges in (\mathbb{R}, d) and that

[6 marks]

$$\lim_{n\to\infty} \|T^n\|^{\frac{1}{n}} = \inf \left\{ \|T^n\|^{\frac{1}{n}} : n \in \mathbb{N} \right\}.$$

(c) Let X be a normed linear space, Y a Banach space and S, T be linear transformations from X to Y such that D_S ⊇ D_T (D_S is the domain of S, etc.). If S is bounded and T is closed show that S + T is closed. [6 marks]

QUESTION TWO (20 MARKS)

(a) Let X be a Banach space and Y a n.l.s. Let {T_α : α ∈ Λ} be a nonvoid family of B(X, Y) such that

 $\sup \{||T_{\alpha}x|| : \alpha \in \Lambda\} < \infty$

for all $x \in X$. Show that

[10 marks]

$$\sup\{\|T_{\alpha}\|: \alpha \in \Lambda\} < \infty.$$

- (b) In a n.l.s. X show that every weak Cauchy sequence is bounded. [5 marks]
- (c) Let (T_n) be a sequence of bounded linear transformations defined on a Banach space X to a n.l.s. Y and suppose that s-lim T_nx exists at each x ∈ X. If we define a map T on X by

Tx = s- $\lim T_n x$

such that $T \in B(X, Y)$ and that $||T|| \le \underline{\lim}_{n\to\infty} ||T_n||$.

[5 marks]

QUESTION THREE (20 MARKS)

- (a) State the open mapping theorem and use it to prove
 - Banach's inverse theorem

[3 marks]

(ii) Closed graph theorem

[5 marks]

(b) Let X be a linear space over K and ||·||₁, ||·||₂ are two Banach space norms for X. If there is a positive constant K such that

$$K||x||_1 = ||x||_2$$
 for all $x \in X$.

show that the two norms are equivalent.

[6 marks]

(c) Let X be a Banach space and Y a n.l.s. and T : D_Y → Y be a closed linear transformation, where D_T is a linear subspace of X which is not {0}. If T is bounded from below, show that the range R_T of T is closed. [6 marks]

QUESTION FOUR (20 MARKS)

- (a) Let M be a closed linear subspace of a Hilbert space H and let x ∈ M. Let d = inf{||y - x|| : x ∈ M}. Show that there exists a unique element y₀ ∈ M such that ||y₀ - x|| = d and that x - y₀ ⊥ M. [10 marks]
- (b) State and prove the Riesz representation theorem for a Hilbert space.

[10 marks]

QUESTION FIVE (20 MARKS)

(a) Let H, K be Hilbert spaces and T ∈ B(K, H). Show that there exists a unique T* ∈ B(K, H) such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all $(x, y) \in H \times K$.

Also show that $||T^*|| = ||T||$ and $(T^*)^* = T$

[10 marks]

(b) H is an inner product space (i.p.s.) and E = {z_α : α ∈ Λ} is an orthonormal set of vectors in H. Show that [5 marks]

$$\sum |\langle y, z_{\alpha} \rangle|^2 \le ||y||^2$$
 for all $y \in H$.

(c) Let H be a Hilbert space with an infinite orthonormal set F. Show that E can never be a Hamel base for H. [5 marks]