

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

SPH 307: INTRODUCTION TO ELECTRONICS

Date: 28th November, 2016

Time: 3.30 - 6.30 pm

INSTRUCTIONS:

 Answer ALL questions in SECTION A and any TWO questions in SECTION B.

ISO 9001:2008 CERTIFIED (G)

SECTION A. This section is COMPULSORY. It carries a total of 30 marks.

- a) (i) What is the most important characteristic that differentiates semiconductors from metals and insulators? Expain. (3 marks)
 (ii) Electrons do not recombine with holes in the p-type base region as they diffuse to the collector. Why? (2 marks)
 (iii) Using a diagram, derive the relation between drift velocity (v_d)and current density (I). (5 marks)
- b) (i) State three important parameters of semiconductor diodes. (3 marks)
 (ii) Describe the phenomenon of avalanche and Zener breakdown effects.
 (5 marks)
 - (iii) Figure 1 shows the characteristics of a Zener diode.

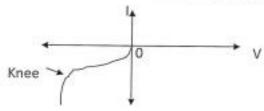


Fig.1
Explain the significance of the knee? (3 marks)

- c) (i) Explain why NPN transistor is more popular than PNP transistor.
 (2 marks)
- (ii) In practice, why are transistors most often used in common-emitter configuration. (2 marks)
- (iii) State two important features of a transistor. (2 marks)
- d) (i) What is an oscillator? [1 mark]
- (ii) Draw an oscillator equivalent circuit. [2 marks]

SECTION B. Answer ONLY TWO questions from this section. Each question carries twenty (20) marks.

a) The diagram in figure 2 shows a simplified transistor circuit with a few discrete components.

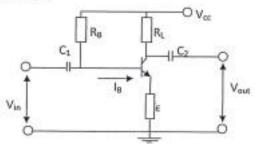


Fig. 2

You are given that $R_B=1.8$ M Ω , $R_L=4.7$ k Ω , $R_E=1$ k Ω , $C_1=C_2=10\mu F$ and $V_{CC}=15V$.

- (i) Explain how Vout and IB are developed. [2 marks]
- (ii) What is the purpose of C1 and C2 in the circuit? [2 marks]
- b) Sketch an improved method of the biasing mode in figure 2 and explain how it works. [10 marks]
- c) (i) Write the load line equation for the circuit in figure 2. [2 marks]
- (ii) If $V_{CE} = 7.5V$ and $\alpha_E = 50$, calculate I_C and I_B . [4 marks]
- a) (i) Indium antimonide has a narrower forbidden gap than silicon. But why
 is silicon more desirable for semiconductor devices than it? [2 marks]
- (ii) Name four areas of application for semiconductor devices. [2 marks]
- (iii) Semiconductor devices have many important advantages over other types of electronic devices. Name any four advantages. [2 marks]
- b) (i) Explain why electrons in the valence band of a semiconductor can conduct current at room temperature. [2 marks]
- (ii) What is a compensated crystal? [2 marks]
- (iii) Explain doping as used in semiconductors. [2 marks]

- c) (i) What is a semiconductor? (2 marks)
- (ii) What happens to the silicon crystal lattice if its temperature is raised above absolute temperature? (2 marks)
- (iii) What happens to the conductivity of silicon:
- I) when you dope the material with equal numbers of donors and acceptors?
 (2 marks)
- II) when you dope silicon with unequal numbers of both kinds of dopants?(2 marks)
- a) (i) Give any four characteristics of an ideal operational amplifier.
 [3 marks]
- (ii) Describe what bandwidth means and give an example of an amplifier application where bandwidth is important. [3 marks]
- b) (i) Give a schematic diagram of an operational amplifier. [2 marks]
- (ii) Draw a circuit of an op-amp wired as an integrator. Show the currents in the circuit. [4 marks]
- c) Prove that the output voltage V₀ and the input voltage V₃ of the integrator are related as:

$$V_0 = -(1/RC)\int V_s dt$$
 [8 marks]

- a) (i) By Indicating the flow of carriers in a diagram and explaining each step, derive the expression of conductivity (σ) of an intrinsic semiconductor in terms of mobility (μ). (10 marks)
- (ii) As in (a) above, derive the expression of conductivity of N and P types of semiconductors. (6 marks)
- b) W hat is the resistivity of an intrinsic germanium semiconductor at 300° K given that $q = 1.6 \times 10^{-19}$ C, $n_i = 2.5 \times 10^{13}$, $\mu_n = 3600$ and $\mu_o = 1700$. (4 marks)