

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

MAIN CAMPUS

SPH 803: QUANTUM MECHANICS

Date: 18th December, 2015

Time: 9.00 - 12.00pm

INSTRUCTIONS:

Answer any THREE Questions.

2015/2016 ACADEMIC YEAR SEPTEMBER-DECEMBER 2015 SESSION

SPH 803: QUANTUM MECHANICS

Answer any THREE questions.

QUESTION 1 (20 MARKS)

- (a) (i) Explain briefly the Schroedinger and Heisenberg pictures of quantum mechanics.
 - (ii) Suppose a wave function in the Schroedinger picture is obtained in the form $\Psi(\vec{r},t) = e^{-\frac{t}{\hbar}H} \psi(\vec{r}), \text{ where H is the Hamiltonian. Given a Hermitian operator } \hat{O}(t) \text{ in the Heisenberg picture.}$
 - (iii) Derive the Heisenberg equation for the operator $\hat{O}(t)$.
- (iv) Transform the time-dependent Schroedinger equation $i\hbar \frac{\partial \psi}{\partial t} = H\psi$; $H = H_0 + H_I$ into the equivalent equation in the interaction picture, given H_0 as unperturbed Hamiltonian and H_I as the interaction Hamiltonian.
- (b) (i) Explain briefly the mathematical and Physical origins of Dirac's ket and bra representation of quantum states.
- (ii) The energy levels of a quantized linear harmonic oscillator are represented by a number state vector |n⟩, n = 0,1,2... Using the annihilation operator â and the creation operator a* as the basic operators for the quantized oscillator, calculate the uncertainty product in the measurements of the quadrature components x₁, x₂ defined by â = x̂₁ + ix̂₂; â* = x̂₁ - ix̂₂ if the oscillator is in the quantum state |n⟩.

QUESTION 2 (20 MARKS)

A three-level atom in an electromagnetic field is described by a general wave function $\Psi(\vec{r},t) = c_1(t) \varphi_1(\vec{r}) + c_2(t) \varphi_2(\vec{r}) + c_3(t) \varphi_3(\vec{r})$ where $c_j(t)$, j = 1,2,3 described by stationary wave

functions $\psi_j(\vec{r})$. If the Hamiltonian of the system is $H = H_0 + H_1$ where H_0 is the free atom Hamiltonian satisfying eigenvalue equation $H_0\psi_j(\vec{r}) = E_j\psi_j(\vec{r})$ and H_i is the atom-field interaction.

- (a) (i) Write down the Schroedinger equation for the interacting atom field system.
- (ii) Derive the time evolution equations for probability amplitudes in the matrix form $i\hbar \frac{dC}{dt} = \overline{H}C$ where the amplitude matrix C and time evolution generating Hamiltonian \overline{H} are to be defined.
- (b) If all elements of H vanish, except E₁ ≠ 0, E₂ ≠ 0, E₃ ≠ 0, H₁₂ = H₂₁ ≠ 0 all of which are constant, solve the time evolution equation in a(ii) above explicitly.

QUESTION 3 (20 MARKS)

Consider the time-independent Schroedinger equation $\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)\psi(r) = E\psi(\vec{r})$ as a scattering problem for a particle of mass m in a scattering potential $V(\vec{r})$.

- (a) By applying a factorization procedure, determine the scattering amplitude.
- (b) Calculate the scattering cross-section in a screened Coulomb potential and use the result to obtain the scattering potential for a Coulomb potential without screening.

QUESTION 4 (20 MARKS)

A relativistic particle of rest mass m_0 linear momentum \vec{p} and total energy E is governed by an energy conservation equation $E^2 = m_0^2 c^4 + p^2 c^2$; $p^2 = \vec{p} \cdot \vec{p}$ where $p = |\vec{p}|$ and c is the speed of light.

- a) (i) Show that the energy conservation equation can be expressed in an alternative four-vector inner product form $(E - m_0c^2, -\vec{p}c)(E + m_0c^2, \vec{p}c)(E + m_0c^2, \vec{p}c) = 0$.
- (ii) Introduce two partner energy four-vectors P and P̄ with temporal components E+m₀c² and E-m₀c² respectively to express the energy conservation equation in covariant form.
- (b) (i) By applying the Dirac four-vector matrix algebraic relation $\gamma_{\mu}\gamma^{\mu} = \gamma^{\mu}\gamma_{\mu} = 4$ and

introducing the energy and momentum quantum operators according to $\hat{E}=i\hbar\frac{\partial}{\partial t}$; $\hat{p}=-i\hbar\vec{\nabla}$, use the covariant form $\overline{P}_{\mu}P^{\mu}=\overline{P}^{\mu}P_{\mu}=0$ or the alternative form $P_{\mu}\overline{P}^{\mu}=P^{\mu}\overline{P}_{\mu}=0$ to obtain the standard Dirac t equations for the electron and its antiparticle, the positron.

(ii) Obtain the general solution for the Dirac equation for a free electron.

QUESTION 5 (20 MARKS)

The spin-up and spin-down state vectors $|u\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; |d\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- (a) (i) Calculate the orthornomalization relations for the spin-state vectors |u⟩ and |d⟩ by evaluating the inner products ⟨j|k⟩, j, k = u, d
 - (ii) Determine the matrix forms of the Pauli spin operators

$$\hat{S}_z = \frac{\hbar}{2} (|u\rangle\langle d| - |d\rangle\langle u|), \hat{S}_+ = \hbar|u\rangle\langle d|$$

 $\hat{S}_- = \hbar|d\rangle\langle u|$

- (iii) Calculate the mean values of the operators \hat{S}_x , \hat{S}_+ , \hat{S}_- in the spin-up and spin down states $|u\rangle$, $|d\rangle$ of the electron.
- (b) The dynamics of an electron in a static magnetic field is generated by Hamiltonian expressed in the form H = g(\$\hat{S}_* + \hat{S}_*\$) where g is a constant. If the electron is initially in spin state |u|, calculate the probability of the transition to spin state |d| after time t.