

# MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

## FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

#### MAIN CAMPUS

SPH 805: STATISTICAL MECHANICS

Date: 17th December, 2015

Time: 9.00 - 12.00pm

#### INSTRUCTIONS:

Answer any THREE Questions.

#### Constants

Boltzmann constant  $k=1.38\times 10^{-23}$ ; density of Sodium is  $0.97~gm^{-3}$ ; Mass of Hydrogen atom is  $1.66\times 10^{-24}~g$ ; Mass of the electron is  $9.05\times 10^{-28}g$ ; Planck's constant is  $6.62\times 10^{-34} Jsec$ , Avagadro's number is  $6.025\times 10^{23}$  per gram molecule Atomic weight of Sodium metal is 23.

### Answer any three questions

- Q1. Derive the number of states W(E) for a given total energy from the partition function  $Z_N(\beta)$  of a system of N oscillators having a characteristic angular frequency  $\omega$ . Calculate the entropy S(E) by asymptotic calculation for large N.
- Q2. The average kinetic energy of the hydrogen atoms in a certain stellar atmosphere (assumed to be in thermal equilibrium) is 1.0 eV.
  - i) What is the temperature of the atmosphere in Kelvins?
  - ii) What is the ratio of the number of atoms in the second excited state (n=3) to the number in the ground state?

(20

iii) Discuss qualitatively the number of ionized atoms. Is it likely to be much greater than or much less than the number in n = 3? why? Q3. The energy level of an oscillator with frequency  $\nu$  is given by

$$\varepsilon \; = \; \frac{1}{2} h \nu, \qquad \frac{3}{2} h \nu, \qquad . \qquad . \qquad . \qquad . \qquad \left( n + \frac{1}{2} \right) h \nu, \qquad . \qquad . \qquad . \label{epsilon}$$

When a system consisting of N almost independent oscillators has the total energy

$$E = \frac{1}{2}Nh\nu + Mh\nu \qquad (M \text{ is an integer})$$

- i) find the thermodynamic weight  $W_M$ , and
- ii) determine the relation between the temperature of this system and E.
- Q4. Apply the canonical and T p distribution in classical statistical mechanics to an ideal gas consisting of N monatomic molecules and derive the respective thermodynamic function.
- Q5. A cubically shaped vessel 20 cm on a side contains diatomic  $H_2$  gas at a temperature of 300 K. Each  $H_2$  molecule consists of two hydrogen atoms, separated by  $\sim \! 10^{-8}$  cm. Assume that the gas behaves like an ideal gas. Ignore the vibrational degree of freedom.
  - i) What is the average velocity of the molecules?
  - ii) What is the average velocity of rotation of the molecules around an axis which is the perpendicular bisector of the line joining the two atoms (consider each atom as a point mass)?

(20Mk

Derive the value expected for the molar heat capacities C<sub>p</sub> and C<sub>v</sub> for such a gas.

END