

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATIONS 2015/2016 YEAR TWO SEMISTER II SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INDUSTRIAL CHEMISTRY BACHELOR OF SCIENCE IN LEATHER TECHNOLOGY SCH 2203: NUCLEAR AND RADIOCHEMISTRY DATE: 15TH MARCH 2016 TIME: 11 AM -1PM

INSTRUCTIONS:

- 1. Answer question **ONE** and any other **TWO** questions.
- 2. You may use electronic calculators, but borrowing will not be allowed.

USEFUL DATA:

$1 J = 1 Kg \cdot m^2 \cdot s^{-2}$	$1 amu = 1.6605655 x 10^{-24} g$
$1 \text{ MeV} = 1.60 \times 10^{-13} \text{ J}$	${}^{1}_{0}n = 1.008665 amu$
$1 amu = 1.6605 \times 10^{-27} Kg$	${}^{2}_{1}H = 2.0140102 amu$
1 amu = 931 MeV	${}_{2}^{3}He = 3.016029 amu$
Avogadro's constant = 6.022×10^{23} /mol c = 2.0080 × 10 ⁸ m/s = 2.0080 × 10 ¹⁰ cm/s	$^{235}_{92}U = 235.0439 amu$
$l \ erg \ (g - cm^2/sec^2) = 2.778 \times 10^{-14} \ KWhr$	${}^{92}_{36}Kr = 91.8976 amu$
$1 \ eV = 1.602176 \times 10^{-19} \ J$	¹⁴¹ ₅₆ Ba = 140.9136 amu

QUESTION ONE [30 MARKS]

- a) Define the following terms.
- i. Fusion
- ii. Fission
- iii. Chain reaction
- iv. Moderator
- v. Control rods

[5 Marks]

b) Describe the two opposing forces between particles in the nucleus, and with reference to these forces, explain why uneven numbers of neutrons and proton the nucleus is unstable.

[3 Marks]

- c) Balance the following nuclear reactions: [4 Marks]
 - i. Alpha Decay of uranium-238
 - ii. Beta Decay of iodine-131
 - iii. Positron Emission of sodium-22
 - iv. Electron Capture of Bismuth-207
- d) Classify each nuclide as stable or radioactive. [4 Marks]
 - *i*. ³⁰P-
 - ii. ⁹⁸Tc-
 - iii. 118Sn-
 - iv. 239Pu-
- e) Write a balanced nuclear reaction for the alpha particle bombardment of plutonium-239. The reaction products include a hydrogen atom and two neutrons. [2 Marks]

f)	Describe the penetration	power of alpha,	beta and gamma radiation.	[3 Marks]
----	--------------------------	-----------------	---------------------------	-----------

- g) State and explain the kind of nuclear change the following unstable nuclide undergoes when it decays. [6 Marks]
 - i. ⁴⁵Ti
 - ii. ²⁴²Pu
 - iii. ¹²B
- h) The half-life of plutonium-239 is 24,000 years. What percentage of nuclear energy waste generated in the year 2004 will be present in the year 2100? [3 Marks]

QUESTION TWO (20 MARKS)

- a) The reaction of two carbon-12 nuclei in a carbon-burning star can produce elements other than sodium. With the aid of a balanced nuclear equation describe the formation of;
 - i. Magnesium-24 from carbon-12 nuclei.
 - ii. Neon-20 from carbon-12 nuclei.

[6 marks]

- b) Determine the thermodynamic stability (binding energy) of ¹⁶O. [1 amu = $1.6605655 \times 10^{-24}$ g; $m_n = 1.67496 \times 10^{-24}$ g; $m_p = 1.67265 \times 10^{-24}$ g; $m_e = 9.109535 \times 10^{-28}$ g; $m(^{16}O) = 15.99491$ amu]. [8 Marks]
- c) Describe any three reactors used in the production of nuclear energy. [6 marks]

QUESTION THREE [20 MARKS]

- a) A sample of radioactive ¹³³I gave with a Geiger counter 3150 counts per minute at a certain time and 3055 counts per unit exactly after one hour later. Calculate the half-life period of 133I.
- b) What is the binding energy for ¹¹B nucleus if its mass defect is 0.08181 amu ? [5 Marks]

c)	Discuss two	factors	that	influence	the	extent	to	which	an	ionization	radiation	affects	a
	biological organism									[4 Ma	[4 Marks].		
d)	1) Explain any three practical applications of radiochemistry in life.								e.	[6 Ma	arks]		

QUESTION FOUR [20 MARKS]

a)	Discuss any six sources of radiations.	[6 Marks]
b)	Sketch a diagram to show the components of the nuclear reactor.	[4 Marks]
c)	Explain the following terms:	[4 marks]

- i. Subcritical:
- ii. Supercritical:
- d) A fission reactor is based on the following reaction

 $^{235}_{92}U + \ ^{1}_{0}n \rightarrow \ ^{92}_{36}Kr + \ ^{141}_{56}Ba + 3\ ^{1}_{0}n + Energy$

Calculate the weight of ²³⁹Pu that would be required to produce 1 million kilowatt-hours (KWhr) of electrical energy. Assume the conversion of nuclear energy to electrical energy is 60% efficient. [6 Marks]

QUESTION FIVE [20 MARKS]

a) How much time would it take for a sample of cobalt-60 to disintegrate to the extent that only 2.0 per cent remains? The disintegration constant λ is 0.13 yr⁻¹. [5 Marks]

- b) A rock once contained 1.0 mg of uranium-238, but now contains only 0.257 mg. given that the half-life for uranium-238 is 4.5×10^9 years, how old is the rock? [4 Marks]
- c) A breeder reactor undergoes the following mechanism
 - (i) A "fertile" 238 U nucleus collides with a neutron to provide 239 U.
 - (ii) ²³⁹U decays by β -emission (t_{1/2} = 24 min) to give an isotope of neptunium.
 - (iii) This neptunium isotope decays by β -emission to give plutonium isotope.
 - (iv) On collision of this plutonium isotope with a neutron, fission occurs to yield $\frac{94}{39}Y$,

¹³⁸₉₉*Cs*, neutrons and energy

Explain the principle of a breeder reactor and write equations for each step. [5 Marks]

d) $^{222}_{86}$ Rn is a natural alpha particle emitter. Due to its noble gas characteristic, it can cause damage to tissues as it can be easily inhaled into the body. $^{222}_{86}$ Rn can be found quite easily in uranium mine because it is a decay product of $^{238}_{92}$ U. In an analysis, 50.0 mg $^{222}_{86}$ Rn decayed to 45.7 mg in 24 hours. Determine the half-life of $^{222}_{86}$ Rn and its rate constant. [6 marks]

Period		,																
1	1 H																$\frac{1}{H}$	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112						
			6	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			7	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
			'															