

TECHNICAL UNIVERISTY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY (DIT 2K 11)

ECT 2211: QUANTITATIVE TECHNIQUE

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Attempt question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	Construct the chain base index number from the following data.	(10 marks)
----	--	------------

Year	1991	1992	1993	1994	1995	1996
Price (shs) 120	125	140	150	135	160

b) Construct a consumer price index number from the table given below:

Group	Index for 1996	Expenditure
Food	550	46%
Clothing	215	10%
Fuel & Lighting	220	7%
House Rent	150	12%
Miscellaneous	275	25%

c) Explain FOUR uses of index numbers

(5 marks)

Question Two

a)	Find the coefficient of c following figures	correlation	between	the u	se of	fertilizers	and	productiv	vity from (12 mar	the ks)
	Fertilizers used (tonnes) Productivity of land (tonne	15 es) 85	18 93	20 95	24 105	30 120	35 130	40 150	45 160	

b) Determine the co-efficient of correlation in 'a' above and comment on your answer **(8 marks)**

Question Three

Two Managers are asked to rank a group of employees in order of potential for eventually becoming top manager. The rankings are as follows:

Employee	Ranking by Manager 1	Ranking by Manager 1
А	10	9
В	2	4
С	1	2
D	4	3
E	3	1
F	6	5
G	5	6
Н	8	8
Ι	7	7
J	9	10

a) Compute the coefficient of rank correlation and comment on the value (10 marks)

b) What are the merits and demerits of ranking

Question Four

A manufacturing company manufactures 3 products X, Y and Z which earn a contribution per unit of £6, £4 and £3.5 respectively. The resources required to make. One unit of each product is given below:

	Х	Y	Ζ
Direct Labour Hrs	2	3	4
Machine Hrs	4	3	1

Next month there will only be 700 direct

(10 marks)

Labour hours and 8000 machine hrs available to production. The demand for each product is unlimited.

Required:

Determine how much of X, Y and Z the company should product if it wishes t maximize its construction next month (20 marks)

Question Five

Using the following Linear Programming model to apply the graphical method:

 $Max \ Z = 8x + 10y$ $y \ge z$ $x \ge 2$ 4x + 2y = 24 $x, y \ge 0$

(NB use the constraints to construct the graph)

(20 marks)