THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 301: DATA STRUCTURES

STREAM: COMP. SC Y3S1
TIME: 2 HOURS
DAY/DATE: TUESDAY16/12/2014
2.30P.M - 4.30 P.M

INSTRUCTIONS:

1. Answer question 1 in section A and any other TWO from section B
2. Marks are awarded for clear and concise answers
3. Note that only Question ONE (Section A) and the first TWO attempted questions in section B will be marked.

SECTION A-COMPULSORY

QUESTION ONE- (30 MARKS)
(a) Give TWO limitations of representing linear structures in memory using pointers and TWO advantages of the same
[4 Marks]
(b) Using a diagram, differentiate between a weighted graph and disconnected Graph
[4 marks]
(c) Differentiate between Bubble sort and selection sort
[4 marks]
(d) Differentiate between;
i. Abstract data type and Data structure [2 Marks]
ii. Pre-order traversal and post-order traversal
[2 Marks]
iii. pointer and array data types in relation to how they store their elements
[2 Marks]
(e) While giving an illustration, describe the operation of a hash table [4 Marks]
(f) Using an example, describe a binary sorted search tree
(g) How are graph algorithms applied in routing problems
(h) How can huffman tree be used to perform data compression during communication [2 Marks]

QUESTION TWO-(20 MARKS)

(a) What are the key characteristics of the following types of linked lists
(i) Singly linked list
[2 marks]
(ii) Doubly linked list
[2 marks]
(b) Compute a weighted Path length for the following Huffman tree
[3 Marks]

(c) (i) Declare a struct type in $\mathrm{C}++$ that contains one pointer that points to a variable containing a float data type and one integer field and an integer array field of size 5.
[5 marks]
(ii) Declare a variable of the structure declared in c(i) above and assign it 'address of variable B' and a constant 16 to its integer field
(d) The Merge-sort algorithm can be described in general terms as consisting of THREE steps. Using a pseudocode, describe THREE steps of merge sort
[6 Marks]

QUESTION THREE

(a) (i) What is the function of REAR and FRONT variables in relation to QueueADT
(ii) Define ADT QUEUE class with TWO operations; Enqueue and Dequeue and TWO variables Front and Rear
(iii) Declare an instance of the ADT QUEUE in a (ii) above
[2 Marks]
(b) Using the following Keys/weights; $15,11,8,4,10,12,14,17$ construct
(i) Huffman tree
(ii) Hash table

QUESTION FOUR-(20 MARKS)

(a) Abstract ADT STACK using a class with the following members
[10 Marks]
(i) TOP
(ii) PUSH()
(iii) POP()
(iv) Constructor
(b) Write down the adjacency matrix for the graph below
[6 marks]

(c) Write a recursive function that can be used to compute x^{n}

QUESTION FIVE-(20 MARKS)

(a) Sort the data $29,54,19,89,9$ using
(i) Bubble sort
[5 Marks]
(ii) Quick sort
[5 Marks]
(iii) Selection sort
(b) Using a Queue, simulate the operation of Breadth first search
[5 Marks]

