CHUKA

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 301: DATA STRUCTURES

STREAM: COMP. SC Y3S1

TIME: 2 HOURS

DAY/DATE: TUESDAY16/12/2014

2.30P.M – 4.30 P.M

INSTRUCTIONS:

- 1. Answer question 1 in section A and any other TWO from section B
- 2. Marks are awarded for clear and concise answers

3. Note that only Question ONE (Section A) and the first TWO attempted questions in section B will be marked.

SECTION A-COMPULSORY

QUESTION ONE- (30 MARKS)

(a)	Give T and T	using pointers [4 Marks]		
(b)	Using Graph	nnected [4 marks]		
(c)	Differe	[4 marks]		
(d)	Differe i.	entiate between; Abstract data type and Data structure	[2 Marks]	
	ii.	Pre-order traversal and post-order traversal	[2 Marks]	
	iii.	pointer and array data types in relation to how they store t	heir elements [2 Marks]	
(e)	While giving an illustration, describe the operation of a hash table [4 Ma			
(f)	Using an example, describe a binary sorted search tree [4 marks]			

- (g) How are graph algorithms applied in routing problems [2 marks]
- (h) How can huffman tree be used to perform data compression during communication

[2 Marks]

QUESTION TWO-(20 MARKS)

- (a) What are the key characteristics of the following types of linked lists
 - (i) Singly linked list [2 marks]
 - (ii) Doubly linked list [2 marks]
- (b) Compute a weighted Path length for the following Huffman tree [3 Marks]

- (c) (i) Declare a struct type in C++ that contains one pointer that points to a variable containing a float data type and one integer field and an integer array field of size 5. [5 marks]
- (ii) Declare a variable of the structure declared in c(i) above and assign it 'address of variable B' and a constant 16 to its integer field [2 marks]
- (d) The Merge-sort algorithm can be described in general terms as consisting of THREE steps. Using a pseudocode, describe THREE steps of merge sort

[6 Marks]

QUESTION THREE

(a)	(i)	What is the function of REAR and FRONT variables in r QueueADT	relation to [2 marks]
	(ii)	Define ADT QUEUE class with TWO operations; Enque and TWO variables Front and Rear	eue and Dequeue [8 marks]
	(iii)	Declare an instance of the ADT QUEUE in a (ii) above	[2 Marks]

- (b) Using the following Keys/weights; 15,11,8,4,10,12,14,17 construct
 - (i) Huffman tree [4 Marks]
 - (ii) Hash table [4 Marks]

QUESTION FOUR-(20 MARKS)

- (a) Abstract ADT STACK using a class with the following members [10 Marks]
 - (i) TOP
 - (ii) PUSH()
 - (iii) POP()
 - (iv) Constructor

(b) Write down the adjacency matrix for the graph below [6 marks]

(c) Write a recursive function that can be used to compute xⁿ [4 marks]

QUESTION FIVE-(20 MARKS)

(a) Sort the data 29,54,19,89, 9 using

	(i)	Bubble sort	[5 Marks]
	(ii)	Quick sort	[5 Marks]
	(iii)	Selection sort	[5 Marks]
(b)	Using	a Queue, simulate the operation of Breadth first search	[5 Marks]