UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 303: THEORY OF COMPUTATION

STREAM: COMP. SC Y3S1
TIME: 2 HOURS
DAY/DATE: MONDAY15/12/2014
2.30P.M - 4.30 P.M

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Marks are awarded for clear and concise answers

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION 1 [30 Marks]
a) A Context Free Grammar G1 is given in the following format

$$
\begin{aligned}
& \mathrm{A} \rightarrow 0 \mathrm{~A} 1 \\
& \mathrm{~A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \#
\end{aligned}
$$

b) Differentiate between Turing acceptable and Turing decidable languages. [4 Marks]
c) Discuss the Church - Turing Thesis highlighting its contributions to the field of computing.
d) Define the classes P and NP
e) You have been given the following definition of a finite state machine / finite automaton M1.
$\mathrm{M} 1=\left(\mathrm{Q}, \sum, \partial, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$, where
i. $\quad \mathrm{Q}=\{\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3\}$
ii. $\sum=\{x, y\}$
iii. ∂ is described as

	x	y
s1	s1	s2
s2	s3	s2
s3	s2	s2

iv. q_{o} is the start state
v. $\mathrm{F}=\{\mathrm{s} 2\}$

Give the state diagram for this machine
[5 Marks]
f) Discuss the effect of the Cook-Levin theorem to the field of Computer Science
g) You are given the running time of a certain Algorithm to be as follows:
$f(n)=6 n^{3}+2 n^{2}+20^{n}+40$
i. Present the big-O notation of the function
ii. Show step by step how you arrived at your answer in i above

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

Question 2 [20 Marks]

a) You are given the following diagram

Discuss the diagram using your knowledge of Theory of Computation
b) Let L be the language $\left\{0^{n} 1^{n} \mid n>=0\right\}$. Use the pumping lemma to prove that language L is not regular
c) You are given the Context Free Grammar defined by the following substitution rules

S->AB
S->ASB
A->a
B->b
Rewrite the above Grammar to aabb
[6 Marks]
d) A Turing Machine M is needed to decide a certain the acceptance problem of a Deterministic Finite Automaton $A_{\text {DFA }}$ where B is a DFA and w is a string of a language. Present an algorithm used by Turing Machine M to decide ADFA
[4 Marks]

QUESTION 3 [20 MARKS]

a) With the help of a diagram, show how Non Deterministic Finite Automaton differs from Push Down Automaton
[6 Marks]
b) Let the Alphabet \sum be the standard 26 letters $\{\mathrm{a}, \mathrm{b} \ldots \mathrm{z}\}$. If $\mathrm{A}=\{$ good, bad $\}$ and $\mathrm{B}=\{\mathrm{boy}$, girl) then find:
i. AUB
ii. AoB
[2 Marks]
iii. A^{*}
[2 Marks]
c) Differentiate between regular and non-regular languages
[2 Marks]
d) You are given the following language $L=\left\{0^{n} 1^{n} \mid n>=0\right\}$. Discuss how a DFA D determines whether this language is regular or not regular
[6 Marks]

Question 4 [20 Marks]

a) A DFA M is a five tuple machine where $M=(Q, \Sigma, \delta, s, F)$. Define each component of machine M
b) Differentiate between enumerators and deciders
c) You are given the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}>=\mathrm{n}\right\}$
i. Describe this language [5 Marks]
ii. Give TWO examples of strings found in this language
[2 Marks]
d) Discuss how to design a finite automaton that recognizes languages having a substring 001 in an input string
[5 Marks]

QUESTION 5 [20 MARKS]

a) Giving examples from searching algorithm problem, discuss the following terms used in the Theory of Complexity
i. Worst Case
ii. Best Case
iii. Average Case
[6 Marks]
b) You are given the following algorithm for a simple sort problem for (int $\mathrm{x}=0 ; \mathrm{x}<\mathrm{n} ; \mathrm{x}++$)
\{
int $\min =x$;
for (int $y=x ; y<n ; y++$)
\{
if (array[y]<array[min])
min=y;
\}
int temp $=\operatorname{array}[x]$;
$\operatorname{array}[\mathrm{x}]=\operatorname{array}[\mathrm{min}] ;$
$\operatorname{array}[\mathrm{min}]=$ temp;
\}
Determine the running time of the algorithm explaining how you arrived at your solution
[10 Marks]
c) Given the following function, discuss the divide and conquer aspects of Algorithms $T(n)=a T(n / b)+f(n)$

