

UNIVERSITY EXAMINATIONS

THIRD EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 303: THEORY OF COMPUTATION

STREAM: COMP. SC Y3S1 TIME: 2 HOURS

DAY/DATE: MONDAY15/12/2014 2.30P.M – 4.30 P.M

INSTRUCTIONS:

1. Answer question **ONE** and any other **TWO** questions

2. Marks are awarded for clear and concise answers

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION 1 [30 Marks]

a) A Context Free Grammar G1 is given in the following format

A**→**0A1

A→B

B**→**#

Formally define the Context Free Grammar G1

[4 Marks]

- b) Differentiate between Turing acceptable and Turing decidable languages. [4 Marks]
- c) Discuss the Church Turing Thesis highlighting its contributions to the field of computing. [3 Marks]
- d) Define the classes P and NP [4 Marks]

e) You have been given the following definition of a finite state machine / finite automaton M1.

M1= (Q, \sum , ∂ , q_o, F), where

- i. $Q = \{s1, s2, s3\}$
- ii. $\Sigma = \{x,y\}$
- iii. ∂ is described as

	X	У
s1	s1	s2
s2	s3	s2
s3	s2	s2

iv. qo is the start state

v. $F = \{s2\}$

Give the state diagram for this machine

[5 Marks]

f) Discuss the effect of the Cook-Levin theorem to the field of Computer Science

[5 marks]

- g) You are given the running time of a certain Algorithm to be as follows: $f(n)=6n^3+2n^2+20^n+40$
 - i. Present the big-O notation of the function

[2 Marks]

ii. Show step by step how you arrived at your answer in i above

[3 Marks]

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

Question 2 [20 Marks]

a) You are given the following diagram

Turing Machine Implement Algorithms

Discuss the diagram using your knowledge of Theory of Computation

[4 Marks]

b)	Let L be the language $\{0^n1^n n>=0\}$. Use the pumping lemma to prove that language L is not regular [6 Marks]	
c)	You are given the Context Free Grammar defined by the following subs	titution rules
	S->AB S->ASB A->a B->b	
	Rewrite the above Grammar to aabb	[6 Marks]
d)	A Turing Machine M is needed to decide a certain the acceptance proble Deterministic Finite Automaton A_{DFA} where B is a DFA and w is a string Present an algorithm used by Turing Machine M to decide ADFA	
QUE	ESTION 3 [20 MARKS]	
a)	With the help of a diagram, show how Non Deterministic Finite Automa Push Down Automaton	ton differs from [6 Marks]
b)	Let the Alphabet Σ be the standard 26 letters $\{a, b z\}$. If $A=\{good, bad\}$ and $B=\{girl\}$ then find:	
	i. AUB	[2 Marks]
	ii. AoB	[2 Marks]
	iii. A*	[2 Marks]
c)	Differentiate between regular and non-regular languages	[2 Marks]
d)	You are given the following language $L=\{0^n1^n n>=0\}$. Discuss how a D whether this language is regular or not regular	FA D determines [6 Marks]
Que	stion 4 [20 Marks]	
a)	A DFA M is a five tuple machine where $M = (Q, \Sigma, \delta, s, F)$. Define each component of machine M [5 Marks]	
b)	Differentiate between enumerators and deciders	[3 Marks]

- c) You are given the language $L=\{a^mb^n|m>=n\}$
 - i. Describe this language [5 Marks]
 - ii. Give TWO examples of strings found in this language [2 Marks]
- d) Discuss how to design a finite automaton that recognizes languages having a substring 001 in an input string [5 Marks]

QUESTION 5 [20 MARKS]

- a) Giving examples from searching algorithm problem, discuss the following terms used in the Theory of Complexity
 - i. Worst Case
 - ii. Best Case
 - iii. Average Case

[6 Marks]

b) You are given the following algorithm for a simple sort problem

Determine the running time of the algorithm explaining how you arrived at your solution [10 Marks]

Given the following function, discuss the divide and conquer aspects of Algorithms T(n) = aT(n/b) + f(n)

[4 Marks]