CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 303: THEORY OF COMPUTATION

STREAM: COMP. SC Y3S1

TIME: 2 HOURS

2.30P.M – 4.30 P.M

DAY/DATE: MONDAY15/12/2014

INSTRUCTIONS:

- 1. Answer question **ONE** and any other **TWO** questions
- 2. Marks are awarded for clear and concise answers

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION 1 [30 Marks]

A Context Free Grammar G1 is given in the following format a)

 $A \rightarrow 0A1$

А→В

B**→**#

Formally define the Context Free Grammar G1 [4 Marks]

- b) Differentiate between Turing acceptable and Turing decidable languages. [4 Marks]
- Discuss the Church Turing Thesis highlighting its contributions to the field of c) computing. [3 Marks] [4 Marks]
- Define the classes P and NP d)

e) You have been given the following definition of a finite state machine / finite automaton M1.

M1= (Q, \sum , ∂ , q_o, F), where

i. Q={s1,s2,s3}			
ii. $\sum = \{x, y\}$			
iii. ∂ is described as			
	X	у	
s1	s1	s2	
s2	s3	s2	
s3	s2	s2	
iv. q_0 is the start state			
v. $F = \{s2\}$			
Give the state diagram for this machine			[5 Marks]
Discuss the effect of the C	cook-Levin theorem to t	he field of Computer S	Science
		1	[5 marks]
You are given the running $n(n)=6n^3+2n^2+20^n+40$	time of a certain Algor	ithm to be as follows:	[]
i. Present the big-O	notation of the function		[2 Marks]
ii. Show step by step	how you arrived at you	answer in i above	[3 Marks]

SECTION B

f)

g)

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

Question 2 [20 Marks]

a) You are given the following diagram

			1	r	1
Turing Machine		Implement		Algorithms	
	•		•		

Discuss the diagram using your knowledge of Theory of Computation [4 Marks]

- b) Let L be the language $\{0^n1^n | n \ge 0\}$. Use the pumping lemma to prove that language L is not regular [6 Marks]
- c) You are given the Context Free Grammar defined by the following substitution rules

S->AB S->ASB A->a B->b

Rewrite the above Grammar to aabb

[6 Marks]

A Turing Machine M is needed to decide a certain the acceptance problem of a Deterministic Finite Automaton A_{DFA} where B is a DFA and w is a string of a language.
Present an algorithm used by Turing Machine M to decide ADFA [4 Marks]

QUESTION 3 [20 MARKS]

- a) With the help of a diagram, show how Non Deterministic Finite Automaton differs from Push Down Automaton [6 Marks]
- b) Let the Alphabet \sum be the standard 26 letters {a, b... z}. If A={good, bad} and B={boy, girl) then find:

i. AUB	[2 Marks]
ii. AoB	[2 Marks]
iii. A*	[2 Marks]
Differentiate between regular and non-regular languages	[2 Marks]

d) You are given the following language $L = \{0^n 1^n | n \ge 0\}$. Discuss how a DFA D determines whether this language is regular or not regular [6 Marks]

Question 4 [20 Marks]

c)

- a) A DFA M is a five tuple machine where $M = (Q, \Sigma, \delta, s, F)$. Define each component of machine M [5 Marks]
- b) Differentiate between enumerators and deciders [3 Marks]

- c) You are given the language $L=\{a^mb^n|m>=n\}$
 - i. Describe this language [5 Marks]
 - ii. Give TWO examples of strings found in this language [2 Marks]
- d) Discuss how to design a finite automaton that recognizes languages having a substring 001 in an input string [5 Marks]

QUESTION 5 [20 MARKS]

- a) Giving examples from searching algorithm problem, discuss the following terms used in the Theory of Complexity
 - i. Worst Case
 - ii. Best Case
 - iii. Average Case

ł

[6 Marks]

 b) You are given the following algorithm for a simple sort problem for (int x=0; x<n; x++)

Determine the running time of the algorithm explaining how you arrived at your solution [10 Marks]

c) Given the following function, discuss the divide and conquer aspects of Algorithms T(n) = aT(n/b) + f(n)

[4 Marks]