TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING (PLANT OPTION)
DIPLOMA IN MECHANICAL ENGINEERING (AUTOMOTIVE OPTION)

EME 2102
MECHANICAL SCIENCE I

END OF SEMESTER EXAMINATIONS

SERIES: DECEMBER, 2013
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

1. You should have the following for this examination:

- Answer Booklet
- Scientific Calculator

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions carry equal marks.
5. This paper consists of THREE printed pages.

Question ONE
(a) State the THREE Newtons Laws of Motion.
(b) A certain body falls freely from a height of 90 m and at the same instant a second body is projected upwards from the ground along the same vertical line, with a velocity of $60 \mathrm{~m} / \mathrm{s}$. Determine the distance and time when the two bodies meet.
(c) A car accelerates uniformly from rest at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ and immediately begins to decelerate to a stop at $1.8 \mathrm{~m} / \mathrm{s}^{2}$. The total distance covered is 2000 m :
(i) Find the total time taken
(ii) Find the greatest velocity attained

Question TWO

(a) State the THREE equations of angular motion.
(b) The speed of an electric motor rises from $1500 \mathrm{rev} / \mathrm{min}$ to $1800 \mathrm{rev} / \mathrm{min}$ in 2 sec . Calculate:
(i) The average angular acceleration
(ii) Number of revolutions turned through in this time
(c) A winding drum of mass 120 tonnes has a radius of gyration of 2 m .

Determine:
(i) The constant torque required to increase the speed from $30 \mathrm{rev} / \mathrm{min}$ to $80 \mathrm{rev} / \mathrm{min}$ in 40 seconds if the friction torque is 12 KNm .
(ii) If the wheel is rotating freely at $80 \mathrm{rev} / \mathrm{min}$ and brakes are applied bringing it to rest in 100revolutions, calculate the brake torque assuming uniform retardation.

Question THREE

(a) (i) Explain what is projectile motion of a body.
(ii) Show that for a projectile on a horizontal plane:

$$
H=\frac{U^{2} \sin ^{2} \theta}{2 g}
$$

Where:	H	-	Maximum height in air
	U	-	Velocity of projection
	Ө	-	Angle of projection
	g	-	Acceleration due to gravity

(b) A golf ball at rest on the ground is struck so that it starts to move with velocity whose horizontal and vertical components are $3 \mathrm{xm} / \mathrm{s}$ and xm / s respectively? In its fight the ball rises to a maximum height of 12 m . Assuming the ground to be horizontal, calculate:
(i) The value of x
(ii) The horizontal distance travelled by the ball before reaching the ground
(iii) The velocity and direction of projection
(13 marks)

Question FOUR

(a) (i) Explain simple harmonic motion (SHM)?
(ii) For a spring-mass system having SHM, show that:

$$
T_{p}=2 \pi \sqrt{m / s}
$$

Where: $\quad \mathrm{Tp}=$ Periodic time $\mathrm{m} \quad=\quad$ Mass carried by the spring
$\mathrm{s} \quad=\quad$ Spring stiffness
(10 marks)
(b) A body moves in SHM. Its velocity had this values $4 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ when its distances from the mean position 2 m and 3 m respectively.

Calculate:
(i) The amplitude
(ii) The periodic time
(iii) The velocity and acceleration at a displacement of 2.5 m from the mean position.
(10 marks)

Question FIVE

In the roof truss of Figure Q. 5 the pin joints mid-way along the long sides and joined by a horizontal bar and are connected also to a pinpoint at the midpoint of the horizontal link spanning the points of support. The right hand reaction is vertical. Find:
(i) The magnitude and direction of the support reactions
(ii) The nature and magnitude of the force in each member

Fig. Q. 5

