

Murang'a University College

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology) University Examination

School of Pure and Applied Science

End of Semester Examination for the Degree of Bachelor of Science in Mathematics and Computer Science - Year III SMA 2304: ORDINARY DIFFERENTIAL EQUATIONS - I

Date: 10th December 2015 Instructions: Attempt Question <u>One</u> and any other <u>Two</u> Questions.

Question One (30 Marks)

a) Classify the differential equations below

i)
$$2\frac{d^2y}{dx^2} - 3y\frac{dy}{dx} + y = 0$$
 (2 Marks)

2 Hours

ii)
$$4xy\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = \cos(2x)$$
 (2 Marks)

- b) Set up a differential equation whose general solution is $y = cx^2 3x$ where c is an arbitrary constant (4 Marks)
- c) Find the general solution to the first order differential equations below
 - i) $2xy^2dy (y + xy)dx = 0$ (4 Marks)

ii)
$$(6xy^3 - e^y)dx + (9x^2y^2 + 8y - xe^y)dy = 0$$
 (5 Marks)

d) Show that the solutions $x_1 = 3e^{7t}$, $y_1 = 2e^{7t}$ and $x_2 = e^{-t}$, $y_2 = -2e^{-t}$ of the system $\frac{dx}{dt} = 5x + 3y$ $\frac{dy}{dt} = 4x + y$ are linearly independent (3 Marks)

e) Find the general solution to the second order differential equation $3\frac{d^2y}{dx^2} - 7\frac{dy}{dx} - 6y = 0$ (5 Marks)

f) The temperature x of an object at any time t is defined by the differential equation $\frac{dx}{dt} = -k(x - 30)$ where k = 0.07. Find the expression for the temperature of the object at any time t given that the object is initially heated to $200^{0}C$ (5 Marks)

Question Two (20 Marks)

- a) Find the general solution to the differential equation $\frac{dy}{dx} - 3y = e^{2x}$ (4 Marks)
- b) Find the general solution to the differential equation $(x+2)dy + (y-e^x)dx = 0$ (5 Marks)
- c) Find the general solution to the differential equation (x y)dx (x + y)dy = 0 (6 Marks)
- d) A metal rod heated to $180^{\circ}c$ cools to $90^{\circ}c$ in 10 minutes when put in a room maintained at a constant temperature of $20^{\circ}c$. Find the temperature of the metal rod at any later time t minutes. (5 Marks)

Question Three (20 Marks)

- a) Find two linearly independent solutions of the differential equation y'' + 5y' + 6y = cos(3x)hence find the Wronskian (7 Marks)
- b) Find the general solution to the system of differential equations

$$\frac{dx}{dt} = 6x - 3y$$

$$\frac{dy}{dt} = 2x + y$$
(13 Marks)

Question Four (20 Marks)

- a) A tank contains 20 kg of salt dissolved in water to form 100 litres of brine. Another salt solution containing 2.0 kg/litre of salt flows into the tank at a rate of 5 litres per minute and the mixture leaves the tank at the same rate. Calculate the amount of salt present in the tank at any later time t minutes.
 (8 Marks)
- b) Use the method of variation of parameters to find the general solution to the differential equation $\frac{d^2y}{dx^2} - 4y = e^{5x}$ (12 Marks)

Question Five (20 Marks)

- a) Find the general solution to the equi-dimensional equation $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$ (10 Marks)
- b) Use the D-operator method to find the general solution to the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = \cos(4x)$ (10 Marks)