

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

CERTIFICATE TECHNICIAN I

SEMESTER I EXAMINATION

APRIL/MAY 2010 SERIES

AH 2101 : ALGEBRA

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Mathematical tables
- Non-programmable calculator

This paper consists of **FIVE** Questions. Answer Question **ONE COMPULSORY** And any other **TWO** Questions.

Question ONE (30 Marks) COMPULSORY

(a).	(i).	Solve for <i>x</i> correct to 4 s.f. $2^x = 3$	(4	Marks)
	(ii).	Simplify, $\log 64 - \log 128 + \log 32$	(3	Marks)
(b).	(i).	Solve by factorization, $10x^2 - 3x - 4 = 0$	(4	Marks)
	(ii).	Determine the values of x and y, which simultaneously equations: $y = 5x - 4 - 2x^2$ and $y = 6x - 7$	sa (5	tisfy the Marks)
(c).	(i).	Evaluate, $(1+i)^4$.	(3	Marks)
	(ii).	Simplify, $\left(\frac{1}{16}\right)^{-\frac{3}{2}}$	(3	Marks)
(d).	(i).	How many permutations are there of the letters in the Mississippi?	woi (4	rd, Marks)

- (e). The second term of a arithmetic progression is 15 and the fifth term is 21. Find;
 - (i). The first term
 - (ii). The common difference

Question TWO (20 Marks)

- (a). In a geometrical progression, the sum of the second and third terms is 9, and the seventh term is eight times the fourth. Find:
 - (i). The first term
 - (ii). The common ratio and
 - (iii). The fifth term

(b). Find the coefficient of x^3 in the expansion of $(1+i)^7$. (4 Marks)

- (c). In how many ways can 11 players be selected from 13 for a soccer team.
 - (i). If no places have yet been filled?
 - (ii). If seven places have already been filled?

(7 Marks)

(9 Marks)

(4 Marks)

Question THREE (20 Marks)

(a). (i). Evaluate,

$$i\left(\frac{1+3i}{1-2i}\right)^2$$
 (6 Marks)

(ii). Solve the quadratic equation, $4x^2 - 7x + 2 = 0$ by using the quadratic formula, giving your answer correct to 2 decimal places.

(4 Marks)

(iii). Solve the following system of linear equations for x, y and z.

3x + 2y - z = -1x + y + z = 63x + y + 2z = 15

(10 Marks)

<u>Question FOUR (20 Marks)</u>

- (a). Prove by induction, that, $a + ar + ar^{n-1} = a\left(\frac{1-r^n}{1-r}\right)$ (8 Marks)
- (b). (i). Determine the roots of the following complex numbers in polar and Cartesian form;

$$(-6 -i5)^{\frac{1}{2}}$$
 (8 Marks)

(ii). Write
$$\log\left(\frac{8 \times 4\sqrt{5}}{81}\right)$$
 in terms of log 2, log 3 and log 5 to any base.

(4 Marks)

Question FIVE (20 Marks)

- (a). Obtain the first four terms of the expansion of $\left[1+\frac{1}{2}x\right]^{10}$ in ascending powers of x. Hence find the value of $(1.005)^{10}$, correct to four decimal places. (10 Marks)
- (b). The resistance R of an electrical conductor at temperature 0°C is given by $R = R_o e^{\alpha \theta}$ where α is a constant and $R_o = 5 \times 10^3$ ohms. Determine the value of α is a constant and $R = 6 \times 10^3$ ohms, and $\theta = 1500^{\circ}C$. Also, find the temperature correct to the nearest degree, when the resistance is 5.4×10^3 ohms. (10 Marks)