

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING CONSTRUCTION TECHNICIAN CERTIFICATE PART II

EBC 1106: THEODOLITE \& TACHEOMETRIC SURVEYING
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

Scientific Calculator

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) Describe the following temporary adjustments of a theodolite:
(i) Leveling
(ii) Focusing and elimination of parallex
(10 marks)
b) Differentiate between reiteration and repetition methods of measuring angles.
(10 marks)

Question Two

a) Table 1 shows four booking in the measurement of vertical angles using different types theodolites. Using an angular booking and reduction table, calculate the angles stating the type of theodolite used.

Table 1

Inst	To	Face Left			Face Right		
Stn.	Stn.	-	-	"	0	-	"
B	C	18	00	20	275	00	22
D	E		00	40	180	00	43
J	K	17	50	15	264	50	17
L	N	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	05	05	2	05	05

(6 marks)
b) (i) State the function of the following parts of a theodolite:

- Vertical circle
- Footscrews
- Slow motion skrews
- Telescope clamp
(4 marks)
(ii) With the aid of a sketch, explain the measurement procedure of vertical angles with a theodolite.
(10 marks)

Question Three

In a tachecheometric exercise of which the staff was held normally the information shown in table 2 mol recorded. The instrument constants were 100 and zero and the height of the instrument was 1.47 m . Given the reduced level of point W as 62.54 m , calculate:
(a) distance WX, WY and XY
(b) Area WXY
(c) The reduced levels of points X and Y
(d) The difference in height XY and its gradient.
(20 marks)

Table 2

Inst At	To	Vertical Circle Reading	Staff Readings	Whole Circle Bearing
W	X	$5^{\circ} 20^{\prime}$	2.553	$37^{\circ} 50^{\prime} 10^{\prime \prime}$
W	Y	$-3^{\circ} 40^{\prime}$	3.975	
			1.397	

Question Four

a) Compare vertical staff holding and normal staff holding under the following headings:
(i) Holding the staff
(ii) Reduction formulae
(iii) Speed of operation
(6 marks)
b) Given in table 3 is the information for a tangential tacheometric survey. The height of the instrument was 1.42 m , calculate:
(i) Distances ST, SU and TU
(ii) Area STU
(iii) The reduced level of points T and U given that of S as 127.00 m
(iv) The difference in height TU
(v) The gradient of line TU
(14 marks)

Question Five

a) (i) Define the term tacheometry.
(ii) Explain the procedure of determining the tacheometric constants of a theodolite.
(5 marks)
b) Derive expressions for horizontal distance and vertical difference in height in normal staff holding when the telescope is elevated.
(13 marks)
Table 3 (for question 4b)

Inst	To Stn	Height of Inst (HI)	Vertical Angel	Staff Reading	Whole Circle Bearing
S	T		$\begin{array}{lll} \hline 0 & 6 & " \\ 2 & 4 & 0 \\ & 5 & \\ 3 & 4 & \\ & 0 & \end{array}$	$\begin{aligned} & 3.510 \\ & 4.000 \end{aligned}$	0°

	U		4	0	00	1.552	70°
			0				
			0	50	2.015		

