

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

CONSTRUCTION TECHNICIAN CERTIFICATE PART II

EBC 1106: THEODOLITE & TACHEOMETRIC SURVEYING

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of **FIVE** questions. Answer any THREE questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Ouestion One

- a) Describe the following temporary adjustments of a theodolite:
 - (i) Leveling
 - (ii) Focusing and elimination of parallex

(10 marks)

b) Differentiate between reiteration and repetition methods of measuring angles.

(10 marks)

Ouestion Two

a) Table 1 shows four booking in the measurement of vertical angles using different types theodolites. Using an angular booking and reduction table, calculate the angles stating the type of theodolite used.

Table 1

Inst	To	Fa	Face Left			Face Right		
Stn.	Stn.	0	6	66	0	6	66	
В	C	18	00	20	275	00	22	
		5						
D	E	0	00	40	180	00	43	
J	K	17	50	15	264	50	17	
		6						
L	N	2	05	05	2	05	05	

(6 marks)

- **b)** (i) State the function of the following parts of a theodolite:
 - Vertical circle
 - Footscrews
 - Slow motion skrews
 - Telescope clamp

(4 marks)

(ii) With the aid of a sketch, explain the measurement procedure of vertical angles with a theodolite.

(10 marks)

Question Three

In a tachecheometric exercise of which the staff was held normally the information shown in table 2 mol recorded. The instrument constants were 100 and zero and the height of the instrument was 1.47m. Given the reduced level of point W as 62.54m, calculate:

- (a) distance WX, WY and XY
- (b) Area WXY
- (c) The reduced levels of points X and Y
- (d) The difference in height XY and its gradient.

(20 marks)

Table 2

Inst	To	Vertical	Staff	Whole Circle
At		Circle	Readings	Bearing
		Reading		
W	X	5° 20'	2.553	37° 50' 10"
			1.975	
			1.397	
W	Y	-3° 40'	3.894	89° 40' 20"
			2.922	
			1.950	

Question Four

- a) Compare vertical staff holding and normal staff holding under the following headings:
 - (i) Holding the staff
 - (ii) Reduction formulae
 - (iii) Speed of operation

(6 marks)

- b) Given in table 3 is the information for a tangential tacheometric survey. The height of the instrument was 1.42m, calculate:
 - (i) Distances ST, SU and TU
 - (ii) Area STU
 - (iii) The reduced level of points T and U given that of S as 127.00m
 - (iv) The difference in height TU
 - (v) The gradient of line TU

(14 marks)

Ouestion Five

a) (i) Define the term tacheometry.

(2 marks)

- (ii) Explain the procedure of determining the tacheometric constants of a theodolite. (5 marks)
- b) Derive expressions for horizontal distance and vertical difference in height in normal staff holding when the telescope is elevated. (13 marks)

Table 3 (for question 4b)

Inst	To Stn	Height of	Vertical		Staff	Whole	
		Inst (HI)	Angel		Reading	Circle	
							Bearing
			0	4	"		
S	T		2	4	0	3.510	0°
				5			
			3	4		4.000	
				0			

U	4	0	00	1.552	70°
		0			
	1	0	50	2.015	
	5	0			