THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

 ((A Constituent College of JKUAT)(A Centre of Excellence)
Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBC 2308: FLUID MECHANICS II
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 marks)

a) A horizontal venturimeter $160 \mathrm{~m} \times 80 \mathrm{~mm}$ is used to measure the flow of an oil of sp gr 0.8 . If the flow is $501 / \mathrm{s}$ and $\mathrm{Cd}=1$, determine the deflection of the oil-mercury gauge.
b) (i) Sketch an orifice nozzle.
(ii) An orifice meter with 100 mm dia orifice fitted in a 250 mm dia pipe has a $\mathrm{Cd}=0.65$. The Pipe delivers oil with a density of $800 \mathrm{~kg} / \mathrm{m}^{3}$. A differential mercury manometer connected to both sides of the orifice measures a deflection of 80 mm of mercury. Determine the rate of flow.
(10 marks)
c) State TWO assumptions made in deriving Bernoulli's equation.
(2 marks)

Question Two (20 marks)

a) A Siphon has a uniform diameter of 75 mm and consists of a bent pipe with its crest 1.2 m above the water level discharging into the atmosphere 4.0 m below the water level. Assuming that the atmospheric pressure is equivalent to 10 m of water and neglecting friction losses, determine:
i) Velocity of flow
ii) Discharge
iii) Absolute pressure at crest level
(10 marks)
b) A swimming pool 10 m long and 5 m wide contains water to a depth of 6 m . The pool is fitted at the bottom with an orifice 360 mm diameter and a coefficient of discharge of 0.6 . Calculate:
i) The time required to empty the pool completely through the orifice
ii) The time required to make the water level fall up to 2 m from bottom.
iii) The depth to which water falls in 6 minutes
iv) The quantity discharged in 6 minutes.
(10 marks)

Question Three (20 marks)

a) A 60 mm diameter orifice is discharging water under a head of 9 m . Assuming $\mathrm{Cd}=0.625$ and $\mathrm{Cv}=$ 0.98 , determine:
i) The actual discharge
ii) The actual velocity of the jet at the vena contracta
iii) Diameter of jet at vena contracta
(8 marks)
b) The following data was collected during a laboratory exercise to calibrate a small orifice.

- Diameter of orifice 20 mm
- Diameter of jet at vena contracta 19.8 mm
- Horizontal and vertical coordinates of a point on the jet from the vena contracta 290 mm and 35 mm respectively
- Head causing flow 1.45 mm
- Actual discharge was measured as 100 litres in 94 seconds.

Determine:

i) The coefficient of contraction (Cc)
ii) The coefficient of velocity (Cv)
iii) Using the direct and indirect method the coefficient of discharge (Cd)
(10 marks)
c) Differentiate between a small orifice and a mouth piece.
(2 marks)
Question Four (20 marks)
a) (i) Derive the expression for actual discharge over a v-notch using usual notation
(ii) During an experiment in a laboratory 280 litres of water flowing over a right angled v-notch was collected in 1 minute. The head causing flow was 100 mm .

Determine the coefficient of discharge of the notch.
(12 marks)
b) In a laboratory experiment, a cippoletti weir with a crest length of 400 mm is used to measure the flow of water in a rectangular channel 600 mm wide. The water level in the channel is 50 mm above the crest of the weir. If the coefficient of discharge of the weir is 0.63 , estimate the discharge in the channel in $\mathrm{m}^{3} / \mathrm{s}$ (to two decimal places) considering velocity of approach.
(8 marks)

Question Five (20 marks)

a) Water is flowing through a pipe 200 mm in diameter and 60 m long with a mean velocity of $2.5 \mathrm{~m} / \mathrm{s}$. Determine the head lost due to friction using:
i) Darcy's Formula if $f=0.005$
ii) Chezy's Formula if $\mathrm{c}=55$
b) Two reservoirs whose surface elevations differ by 10 m are connected by three pipes laid in series as shown in figure 1. Calculate:
i) All the individual losses
ii) The discharge through the pipes

All changes of pipe sections are sudden and $\mathrm{Cc}=0.735$ and lengths L, diameter d and Darcy's f are as shown
(14 marks)

10 m

