THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE ((A Constituent College of JKUAT)
 (A Centre of Excellence)
 Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

EBE 3118: HYDRAULICS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator/Mathematical Table

This paper consists of FIVE questions
Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 Marks)

a) With the aid of a sketch briefly describe "the hydrologic cycle"
b) Define the following forms of precipitation
(i) Rainfall
(ii) Snow
(iii) Hail
(iv) Smog
(v) Drizzle
(10 marks)

Question Two (20 marks)

a) Make a labeled diagram of a standard raingauge.
b) While determining the average precipitation for a certain catchment, thiessen polygons were constructed for a network of eight gauges and the resulting data are shown in table 1 .

Determine the average precipitation using:
(i) Arithmetic mean method
(ii) Thiessen polygon method

Station	Precipitation (mm)	Area in $\mathbf{k m}^{2}$ of Thiessen Polygon
A	40	4.2
B	25	10.4
C	37	49.8
D	49	35.8
E	55	6.6
F	38	47.2
G	48	41.5
H	40	1.5

Table 1

Question Three (20 marks)

a) Briefly describe the following types of streams:
(i) Perennial streams
(ii) Intermittent streams
(iii) Ephemeral streams
(9 marks)
b) (i) Define the term runoff and state typical units of measurements.
(ii) State EIGHT factors that affect the amount of runoff from a catchment area.

Question Four (20 marks)

a) The data in table 2 was obtained during a stream flow measurement exercise. Using the mid section method, calculate:
(i) The stream flow
(ii) The mean velocity of flow
(14 marks)

Distance from left water edge (m)	0	1	2	3	4	5	6	7
Depth of vertical (m)	0.00	1.25	2.00	3.00	2.50	2.00	1.50	0.00
Mean Velocity in Vertical m/s	0.00	0.40	0.63	0.80	0.68	0.65	0.55	0.00

Table 2
b) The depth of flow at a vertical in a stream is 3.5 m . The velocity of flow at various points in the vertical as measured by a current meter are given in table 3. Determine the mean velocity for the vertical using:

Position of meter below water surface (m)	0.7	1.4	2.1	2.8
Velocity m/s	3.28	3.16	2.94	2.62

Table 3

(i) Single point method
(ii) Two point method
(iii) Three point method

Question Five (20 marks)

a) With the aid of a sketch, illustrate the following:
(i) Unconfined aquifer
(ii) Water table
(iii) Confined aquifer
(iv) Perched aquifer
(v) Artesian well
(10 marks)
b) In an artesian aquifer 8 m thick, a 10 cm diameter well is pumped at a constant rate of $1001 / \mathrm{min}$. The steady state draw down in two wells located 10 m and 50 m distances from the centre of the well are 3 m and 0.05 m respectively. Compute.
(i) Transmissitivity of the aquifer in $\mathrm{m}^{2} /$ day
(ii) Hydraulic conductivity of the aquifer in $\mathrm{m} /$ day (coeff of permeability k)
(10 marks)

