

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(**(A Constituent College of JKUAT)** (A Centre of Excellence)

Faculty of Engineering & Technology in Conjunction with Kenya Institute of Highways and Building & Technology (KIHBT)

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

HIGHER DIPLOMA BUILDING & CIVIL ECONOMICS

EBE 3118: HYDRAULICS II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet

- Scientific Calculator/Mathematical Table

This paper consists of **FIVE** questions Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One (20 Marks)**

a)	With the aid of a sketch briefly describe "the hydrologic cycle"	(10 marks)

- **b)** Define the following forms of precipitation
 - (i) Rainfall
 - (ii) Snow
 - (iii) Hail
 - (iv) Smog
 - (v) Drizzle

Question Two (20 marks)

- a) Make a labeled diagram of a standard raingauge.
- b) While determining the average precipitation for a certain catchment, thiessen polygons were constructed for a network of eight gauges and the resulting data are shown in table 1.

Determine the average precipitation using:

- (i) Arithmetic mean method
- (ii) Thiessen polygon method

Station	Precipitation (mm)	Area in km ² of Thiessen Polygon
А	40	4.2
В	25	10.4
С	37	49.8
D	49	35.8
Е	55	6.6
F	38	47.2
G	48	41.5
Н	40	1.5

Table 1

Question Three (20 marks)

a) Briefly describe the following types of streams:

- (i) Perennial streams
- (ii) Intermittent streams
- (iii) Ephemeral streams

(14 marks)

(10 marks)

(6 marks)

(9 marks)

© 2012 - The Mombasa Polytechnic University College

Question Four (20 marks)

- a) The data in table 2 was obtained during a stream flow measurement exercise. Using the mid section method, calculate:
 - The stream flow (i)
 - The mean velocity of flow (ii)

Distance from left water edge (m)	0	1	2	3	4	5	6	7
Depth of vertical (m)	0.00	1.25	2.00	3.00	2.50	2.00	1.50	0.00
Mean Velocity in Vertical m/s	0.00	0.40	0.63	0.80	0.68	0.65	0.55	0.00
Table 2								

b) The depth of flow at a vertical in a stream is 3.5m. The velocity of flow at various points in the vertical as measured by a current meter are given in table 3. Determine the mean velocity for the vertical using:

Position of meter below	0.7	1.4	2.1	2.8			
water surface (m)							
Velocity m/s	3.28	3.16	2.94	2.62			
Table 3							

- (i) Single point method
- Two point method (ii)
- (iii) Three point method

Question Five (20 marks)

- a) With the aid of a sketch, illustrate the following:
 - Unconfined aquifer (i)
 - (ii) Water table
 - Confined aquifer (iii)
 - Perched aquifer (iv)
 - Artesian well **(v)**
- b) In an artesian aquifer 8m thick, a 10cm diameter well is pumped at a constant rate of 100l/min. The steady state draw down in two wells located 10m and 50m distances from the centre of the well are 3m and 0.05m respectively. Compute.

 (τ)

- Transmissitivity of the aquifer in m²/day **(i)**
- (ii) Hydraulic conductivity of the aquifer in m/day (coeff of permeability k) (10 marks)

(10 marks)

(14 marks)

(6 marks)