TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBC 2304: HYDRAULICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions of the FIVE questions
Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required

Question One

a) Briefly explain the following:
(i) Open channel
(ii) Uniform flow
(iii) Wetted perimeter marks)
b) An open channel is V-shaped, each side sloping at 45° to the vertical, rate of flow $\mathrm{Q}=0.085 \mathrm{~m}^{3} / \mathrm{s}$ when depth is 250 mm . Calculate slope of the channel take chezy constant $=50$ in SI units
(8 marks)
c) The cross section of an open channel is shaped in the form of a trapezium with side slopes 1:2.

Assuming chezy constant $\mathrm{C}=50$ in SI units find discharge if depth of water is 1.55 m and bed slopes at 1 in 800
(6 marks)

Question Two

a) Explain the term "Hydraulic mean depth"
(2 marks)
b) Deduce the manning expression from Chezy formula
c) A trapezoidal canal has trapezoidal side slopes 1:2 and bottom width 2.6 m . The canal discharges at a depth of 1.5 m . If bed slopes at 1 in 3000 determine the discharge. Take manning coefficient $\mathrm{n}=0.025$
(7 marks)
d) A trapezoidal channel of bottom width 1.8 m has side slope 1 vertical to 2 horizontal. The channel bed slopes at 1 in 2000 and discharge water a depth of 1.5 m . Find flow velocity using Chezy, C expressed

$$
C=\frac{87}{1+K / \sqrt{M}}
$$

as

$$
\text { where } K \text { is Bazin coefficient }=1.3
$$

Question Three

a) Show that a rectangular channel discharges at maximum when its breadth is twice the depth
b) A trapezoidal channel conveys $150 \mathrm{~m}^{3} / \mathrm{min}$ when its cross section is minimum. Its bed slopes at 1 in 500 and sides slope at 45°. Determine its dimensions:
(12 marks)
(Take C = 56 in SI units)

Question Four

a) A sewer consists of circular x-section diameter 0.4 m bed slopes at 1 in 200 . Find maximum discharge if Chezy coefficient C = 50 in SI units
(6 marks)
b) Explain the following terms as applied to open channels of non-uniform flow:
(i) "Critical velocity"
(ii) "Shooting flow"
c) (I) Show that critical depth for flow in a open channel triangular shaped with side slope $1: \mathrm{N}$ when $D_{C}=4 / 5 \mathrm{H}$ where H is specific energy
(II) Water flow in a channel of rectangular shape at 1.4 m depth and at a velocity of $1.35 \mathrm{~m} / \mathrm{s}$. Determine:
(i) Specific energy for flow
(ii) Critical depth
(iii) Maximum discharge if the channel is 2.5 m wide marks)

Question Five

a) Briefly explain:
(i) The operation principle that apply to centrifugal pump
(ii) The sterm specific speed of a centrifugal pump
b) A centrifugal pump operating at $1200 \mathrm{rev} / \mathrm{min}$ provided the following results:

Discharge $\left(\mathrm{m}^{3} / \mathrm{min}\right)$	0	3.5	8.0	12.5	17.0	21.5
Head (m)	21.5	21.2	20.6	18.5	13.1	0

The pump is connected to a 300 mm diameter pipe 70 m long and discharges to the atmosphere at a height of 10 m above sump level. Taking $\mathrm{f}=0.006$ calculate the:
(i) Required head and
(ii) Determine graphically operating parameters for the system

