JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATICS AND INNOVATION SYSTEMS UNIVERSITY EXAMINATION FOR BACHELORS DEGREE $1^{\text {ST }}$ YEAR $1{ }^{\text {ST }}$ SEMESTER 2013/2014 ACADEMIC YEAR REGULAR

COURSE CODE: SMA 3113
COURSE TITLE: LOGICAL FUNCTIONS
EXAM VENUE: LR 2 STREAM: (BSc. Comp Security, ICT, BIS)
DATE: 17/04/14 EXAM SESSION: 2.00-4.00 PM
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS) COMPULSORY

a) Simplify the Boolean function $\mathrm{F}(x, y, z)=\mathrm{S}(2,3,4,5)$

6 Marks
b) Convert the following twos complement binary numbers to their equivalent decimal number i) (01.011)2's-compl; ii)(11.011)2's-compl 6 Marks
c) Convert the following binary numbers to their equivalent decimal numbers
i) 1011.101_{2}
ii) 0.0110_{2}
iii) 1010.1101_{2}
iv) 1110110_{2}
6 Marks
d) For the given functions, rearrange the formulae to make x the subject of the formulae. Show your working. i)

$$
y(2 x+1)=x+1 \text { ii } \quad \mathrm{m}=\mathrm{k} \sqrt{a(1-x)}
$$

6 Marks
e) Solve the following using one's complements i) 1000-1010 ii) 1101-111

6 Marks

QUESTION TWO (20 MARKS)

a) In a survey of 10 households, the number of children was found to be $4,1,5,4,3,7,2,3,4,1$
(i) State the mode.
(ii) Calculate
(a) the mean number of children per household
(b) the median number of children per household.
(c) A researcher says: "The mode seems to be the best average to represent the data in this survey." Give ONE reason to support this statement.
\{1 Mark \}
b) Three resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are connected in parallel in an electric circuit. Solve for the effective resistance $\mathrm{R}_{\text {eff }}$ given that $\frac{1}{R_{z f f}}=\frac{1}{R_{1}}+\frac{1}{R_{z}}+\frac{1}{R_{z}}$
c) In the design of orifice plate flowmeters, the volumetric flowrate, $\mathrm{Q}\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$, is given by

$$
Q=C_{d} A_{0} \sqrt{\frac{2 g \Delta h}{1-A_{0}^{2} / A_{F}^{2}}}
$$

where Cd is a dimensionless discharge coefficient, $\mathrm{h}(\mathrm{m})$ is the head difference across the orifice plate and $\mathrm{Ao}\left(\mathrm{m}^{2}\right)$ is the area of the orifice and $\mathrm{Ap}\left(\mathrm{m}^{2}\right)$ is the area of the pipe.
(i) Rearrange the equation to solve for the area of the orifice, Ao, in terms of the other variables.
(ii) A volumetric flowrate of $100 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ passes through a 10 cm inside diameter pipe.

Assuming a discharge coefficient of 0.6 , calculate the required orifice diameter, so that the head difference across the orifice plate is 200 mm .

3 Marks
Be very careful with the units!

QUESTION THREE (20 MARKS)

a) Given the sets $A=\{a, b, c, d, e, f\} \quad B=\{a, c, e, g, i, k\} \quad C=\{g, h, i, j, k\}$ Find
i) $\quad A U B$ ii) $A \cap B \quad$ iii) $A \cap C$

6 Marks
b) Prove the following: i). $A+\bar{A} \cdot B=A+B$
ii) $A \cdot(\bar{A}+B)=A \cdot B$
iii) $(\mathrm{A}+\mathrm{B}) \cdot(\overline{\mathrm{A}}+\mathrm{C})=\mathrm{A} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{B}$
iv) $(\mathrm{A}+\mathrm{C}) \cdot(\overline{\mathrm{A}}+\mathrm{B})=\mathrm{A} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \mathrm{C}$

12 Marks
c) State De Morgans' Theorem

02 Marks

QUESTION FOUR (20 MARKS)

a) Construct the table for $(\mathrm{a} v \mathrm{~b}) \leftrightarrow[((\mathrm{a}) \Lambda \mathrm{c}) \rightarrow(\mathrm{b} \Lambda \mathrm{c})]$

8 Marks
b) Show the equivalence of the following:
i) $\quad[d \rightarrow((a) \Lambda b) \Lambda c]$ and $[(a \vee((b \Lambda c))) \Lambda d]$

5 Marks
ii) $\quad \mathrm{P} \vee(\mathrm{q} \vee \mathrm{r})$ and $(\mathrm{p} \vee \mathrm{q}) \Lambda(\mathrm{p} v)$

7 Marks

QUESTION FIVE (20 MARKS)

a) Prove the following identity: $(\mathrm{A} U \mathrm{~B}) \cap\left(\mathrm{AUB} \mathrm{B}^{\mathrm{c}}\right)=\mathrm{A}$

4 Marks
b) Draw Venn diagrams showing:
i) $\quad(\mathrm{A} \mathrm{U} \mathrm{B})=(\mathrm{A} U \mathrm{C})$ but $\mathrm{B} \neq \mathrm{C} \quad$ 4 Marks
ii) $\quad(\mathrm{A} \cap \mathrm{B})=(\mathrm{A} \cap \mathrm{C})$ but $\mathrm{B} \neq \mathrm{C} \quad 4$ Marks
c) Draw the logic circuit L with inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and output Y which corresponds to each Boolean expression:
i) $\mathrm{Y}=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \quad$ 4 Marks
ii) $\quad \mathrm{Y}=\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$

4 Marks

