

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATICS AND INNOVATION SYSTEMS UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE BIOLOGICAL 2ND YEAR 1ST SEMESTER 2013/2014 ACADEMIC YEAR

REGULAR

STREAM: (SIIS)

COURSE CODE: SCS 3231

COURSE TITLE: DATA COMMUNICATION AND NETWORKS

EXAM VENUE: CR

DATE: 24/04/14

EXAM SESSION: 9.00 – 11.00 AM

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Q

Networks (LANs).

Questi	ion one (30 marks)	
a)	Differentiate between data communication and data networks.	(2 marks)
b)	Give the fundamental equation for a sinusoidal wave and clearly define	
	what each term means and the standard unit for each term.	(3 marks)
c)	Define the following terms:	
	i) Spectrum	
	ii) Bandwidth	
d)	What are the three main causes of transmission impairments.	(3 marks)
e)	Consider the sinusoidal function given	
	$s(t) = 20 + \sin(2\pi ft) + \frac{1}{3}\sin(6\pi ft) + \frac{1}{5}\sin(10\pi ft)$	
	Where $f = 10^6$ Hz.	
	i) What is the amplitude <i>A</i> , for the sinusoidal function?	(1 mark)
	ii) What is the spectrum of the wave?	(2 marks)
	iii) What is the period, <i>T</i> of the wave?	(2 marks)
	iv) What is the effective bandwidth, <i>B</i> of the wave?	(2 marks)
f)	Give the three ways in which wave propagation occurs. (Use diagrams).	
	What are the operating frequencies for each propagation method.	(6 marks)
g)	How many hosts and subnets can you get from the network 172.28.0.0	
	255.255.255.0?	(2 marks)
h)	State three modulation techniques that are used in encoding of analog data	
	to analog signals.	(3 marks)
i)	State the four dimensions that multiplexing of data transmission can be	
	done.	(4 marks)
Question	two (20 marks)	
a) I	Draw the simplified communication model and explain what each	
compo	onent is for.	(8 marks)
b) I	Differentiate between Wide Area Networks (WANs) and Local Area	

Define channel capacity (2 marks) c)

(2 marks)

1

d)	Consider a voice channel with BW of 2.8 kHz. A typical value of S/N for a	
	telephone line is 20dB. Using Shannon Capacity, calculate the channel	
	capacity.	(6 marks)
e)	Which subnet does host 172.16.170.63/25 belong to?	(2 marks)

Question three (20 marks)

a)	Using a diagram, describe the three different types of network topologies.	(6 marks)
b)	Briefly describe the two types of transmission media. Give an examples for	
	each type.	(4 marks)
c)	Encode 00110100110101 using the following digital encoding formats.	
	i) Nonreturn to Zero-Level (NRZ-L)	(2 marks)
	ii) Nonreturn to Zero Inverted	(2 marks)
	iii) Bipolar AMI	(2 marks)
d)	State and briefly describe the two main switching technologies.	(4 marks)

Question Four (20 marks)

a)	Draw the ISO/OSI and TCP/IP models.	(8 marks)
b)	Differentiate routing and forwarding as used in networks.	(2 marks)
c)	Briefly discuss the three main types of routing strategies.	(6 marks)
d)	Discuss frequency division multiplexing and time division multiplexing	
	briefly.	(4 marks)

Question Five (20 marks)

a)	Briefly discuss terrestrial and satellite microwaves.	(4 marks)
b)	What is the required receive power threshold, P_r of the receiver given two	
	parabolic antennas have diameter, $D = 1$ meter, frequency, $f = 5$ GHz,	
	transmit power, $P_t = 1$ W and distance, $d = 1$ km. (Hint: Effective Area of a	
	parabolic antenna = $0.55 \times \text{physical area}$)	(8 marks)
c)	One method used in error control is called automatic repeat request (ARQ).	
	State the three versions of ARQ.	(3 marks)
d)	Using a suitable diagram showing a random analog signal, code the signal	
	using delta modulation into a digital signal.	(5 marks)