JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF

SCIENCE IN RENEWABLE ENERGY
$1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER 2013/2014 ACADEMIC YEAR CENTRE: MAIN

COURSE CODE: SPH 3122

COURSE TITLE: HEAT AND THERMODYNAMICS
EXAM VENUE: AH
STREAM: BSc. .Education
DATE: 13/12/2013
EXAM SESSION: 9.00-11.00 AM
TIME: 2 HOURS

Instructions:

1. Answer question 1(Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Q1. a) A Carnot engine has low temperature reservoir of $7^{\circ} \mathrm{C}$ and efficiency of 40%. What value of temperature of the hot reservoir would increase the efficiency of the engine to 60% ?
(ii) Distinguish between isothermal and adiabatic changes.
b) (i) What is a quasi-static process?
(ii) State the relationship between entropy and the second law of thermodynamics.
(3 marks)
c) A quantity is compressed isothermally until its pressure is doubled. It is then allowed to expand adiabatically until its original volume is restored. Find the final pressure in terms of the initial pressure.
(the ratio of the specific heat capacities of Oxygen, $\gamma=1.4$) (3 marks)
(ii) Under what conditions is the work done on a system reversible? (2 marks)
d) (i) A new temperature scale has just been implemented. In this new temperature scale, the interval between the freezing point of ice and the boiling point of ice has been decided to be $260{ }^{\circ} \mathrm{N}$. the freezing point is set at $14^{0} \mathrm{~N}$ and the boiling point at $274{ }^{0} \mathrm{~N}$? Convert $100^{0} \mathrm{~N}$ into degree Celcius.
(ii) Differentiate between a heat engine and a refrigerator.
e) Why must heat energy be supplied to a solid to change it into liquid?
(ii) What is a thermometric function? Give two examples.

Q2. a) (i) Calculate the rate of heat flow by conduction through a length of 20 cm of brick, with ends $10 \mathrm{~cm} \times 7 \mathrm{~cm}$ if its thermal conductivity is $0.6 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ and its ends are kept at $100{ }^{0} \mathrm{C}$ temperature difference.
(5 marks)
ii) Given that the pressure exerted by an ideal gas is $p=\frac{1}{3} \frac{N}{V} m v_{a v}{ }^{2}$ and hence show that $p \propto E_{k}$ (where E_{k} is the average translational energy of the molecule).
b) a) An Otto engine works on a gasoline vapour and air with an overall heat capacity C_{v}. If the input $Q_{i n}=M C_{V}\left(T_{3}-T_{2}\right)$, while heat rejected $Q_{i n}=m C_{V}\left(T_{4}-T_{1}\right)$, show that the efficiency $\eta=1-\frac{T_{4}-T_{1}}{T_{3}-T_{2}}$
ii) Taking the average temperature of the Earths' atmosphere to be 293 K , calculate the root mean square velocity $V_{r m s}$ for Nitrogen (molar mass $28 \mathrm{~g} / \mathrm{k} \mathrm{mol}$) and Hydrogen ($21 \mathrm{~g} / \mathrm{k} \mathrm{mol}$) in the earths' atmosphere.

Q3.a) (i) Show that the change in entropy for an ideal gas which undergoes a reversible isothermal expansion from a volume of V_{i} to V_{f} is given by

$$
\begin{equation*}
\Delta S=n R \operatorname{In} \frac{V_{f}}{V_{i}} \tag{6marks}
\end{equation*}
$$

(ii) Determine the external work done by $1 \times 10^{3} \mathrm{~kg}$ of an ideal gas when its temperature is raised from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at a constant pressure of $1.01 \times 10^{5} \mathrm{~Pa}$. The density of the gas at S.T.P. is $1.25 \mathrm{Kg} / \mathrm{m}^{3}$.
(7 marks)
b) A heat pump made by a local artisan has a coefficient of performance C.P. of 3, when the indoor temperature is $6{ }^{\circ} \mathrm{C}$ while the outside is $20^{\circ} \mathrm{C}$.
(i) What is the maximum value of the C. P.
(ii) How much work is required to operate this pump if it is pump $3 \times 10^{6} J$ of heat to the room per hour?
(4 marks)
Q4.a) Given that entropy is a function of temperature and pressure only, $S=S(T, P)$ use the appropriate Maxwell's equation to show that:

$$
\begin{equation*}
T d S=C_{p} d T-T\left[\frac{\partial V}{\partial T}\right]_{P} d P \tag{7marks}
\end{equation*}
$$

b) 20.0 g of hydrogen gas $\left(c=1.42 \times 10^{4} \mathrm{~J} / \mathrm{Kg} / \mathrm{K}\right)$ starting at a temperature of $30{ }^{0} \mathrm{C}$ is heated to $40{ }^{0} \mathrm{C}$ during which the volume of the container grows by $7.00 \times 10^{-4} \mathrm{~m}^{3}$ as the pressure is constant at 1 atmosphere.
(i) What is the work done by the hydrogen gas.
(ii) What is the change in internal energy of the system?
c) Show that $C_{p}-C_{v}=n R$ where C_{p} and C_{v} are the specific heat capacities at constant pressure and volume respectively, n is the number of moles of gas and R is the universal gas constant.
(6 marks)
Q5. a) Assuming the human body has an exposed surface area of $1 \mathrm{~m}^{2}$ and body temperature of $37{ }^{0} \mathrm{C}$. determine the rate of heat loss by radiation to the environment at $23{ }^{0} \mathrm{C}$. Take Stefan's constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$ and emissivity $e=0.7$.
b) Water of mass 400 g at a temperature of $60^{\circ} \mathrm{C}$ is put in a well lagged copper calorimeter of mass 160 g . A piece of ice at $0^{\circ} \mathrm{C}$ and 40 g is placed in the calorimeter and the mixture stirred gently until all the ice melts. Determine the final temperature of the mixture. (specific latent of heat of fusion of ice $=33400 \mathrm{~J} / \mathrm{kg}$, specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg} \mathrm{K}$, specific heat capacity of copper $=900 \mathrm{~J} / \mathrm{kg} \mathrm{K}$).
(7 marks)
ii) Air is compressed adiabatically in a diesel engine from atmospheric pressure and room temperature, to $1 / 16$ of its original volume. Find the final temperature. (Assume the process is reversible, and take $\gamma_{\text {air }}=1.6$).

