

UNIVERSITY EXAMINATIONS 2013/2014 ACADEMIC YEAR

2nd YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE, BACHELOR SCIENCEBACHELOR OF ARTS

COURSE CODE/TITLE: SMA 261- PROBABILITY AND STATISTICS II

END OF SEMESTER: II

DURATION: 3 HOURS

DAY/TIME: WEDNESDAY 8.00 TO 11.00AM DATE: 9.04.2014 (LTN)

Instructions:

Answer Question ONE and any other TWO questions.

SECTION A QUESTION ONE

a) State the conditions discrete random variables X and Y must satisfy to have a joint probability density function (2marks)

b) Show that
$$E\{E(X / Y)\} = E(X)$$

c) Suppose that X and Y are discrete random variables with joint probability density function

$$f(x, y) = \begin{cases} p(2xy + x + y + 1) & x = 0, 1, 2 \\ 0 & \text{otherwise} \end{cases}, y = 1, 3$$

- I) Determine the value of P.
- II) Determine the marginal density functions and Hence check the independence of the random variable.
- iii) Find the probability
 - a) f(1,2)b) $f(X \le 1 \quad Y = 1)$ (10 marks)

d) Given that the var(x)=9 and var(y)=4 and $\ell_{xy} = \frac{-1}{6}$ compute variance

of
$$[X - 3Y + 3]$$

(4 marks)

(4 marks)

e) Let Y be a continuous random variable. Show that the function

$$f(y) = \begin{cases} \frac{1}{2}y, & 0 \le y \le 2\\ 0 & elsewhere \end{cases}$$

Is a probability density function. Hence calculate

 $P(0.5 \le Y \le 1)$ and $P(-I \le Y \le I)$

f) State the central limit theorem

g) State and prove the three properties of Bivariate conditional expectation (9 marks)

SECTION B

QUESTION TWO(15 marks)

a)) Consider the following joint p.d.f of two independent random variable

$$f(x, y) = \begin{cases} 4xy & 0 \le x \le 1 \ 0 \le y \le 1 \\ 0 & elsewhere \end{cases}$$

T = X + YZ = 2X - Y

Determine whether Z and T are independent

b) Consider marks obtained by ten students in tests X and Y

student	А	В	С	D	Е	F	G	Η	Ι	J
Х	13	30	15	9	17	22	8	17	14	12
Y	21	12	19	22	18	13	25	15	20	16

Compute the rank correlation coefficient **QUESTION THREE(15 marks)**

a)Suppose that X and Y are two discrete random variables with the joint p.d.f

$$f(x, y) = \begin{cases} a(xy + x + \frac{1}{2}y + 1) & x = 0, 1; y = 2, 4 \\ 0 & elsewhere \end{cases}$$

(i) Determine value of a (2 marks) (ii) Determine the joint moment generating function (3marks) (iii) Determine the mean of x and that of y (4 marks) (iv) Determine the E(XY) hence check for independence (3 marks) (v) What is the correlation coefficient

QUESTION FOUR(15 marks)

a)Show that $\operatorname{var}(ax-by) = a^2 \operatorname{var}(x) + b^2 \operatorname{var}(y) - 2ab\delta xy$ (4marks)

b) Using the moment generating technique show that the mean and the variance of the χ^2 distribution are n and 2n given that (11 marks)

$$f(x) = \begin{cases} \frac{1}{\sqrt{\frac{n}{2}2^{\frac{n}{2}}}} x^{\frac{n}{2}-1} e^{\frac{-x}{2}} & x > 0\\ \sqrt{\frac{n}{2}2^{\frac{n}{2}}} & 0 \\ 0 & elsewhere \end{cases}$$

(9 marks)

(3 marks)

(6 marks)

(6marks)

(3 marks)