UNIVERSITY EXAMINATIONS 2013/2014 ACADEMIC YEAR
$2^{\text {nd }}$ YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE, BACHELOR SCIENCEBACHELOR OF ARTS

COURSE CODE/TITLE: SMA 261- PROBABILITY AND STATISTICS II
END OF SEMESTER: II
DURATION: 3 HOURS
DAY/TIME: WEDNESDAY 8.00 TO 11.00AM DATE: 9.04.2014 (LTN)
Instructions:
Answer Question ONE and any other TWO questions.

## SECTION A

QUESTION ONE
a) State the conditions discrete random variables $X$ and $Y$ must satisfy to have a joint probability density function
b) Show that $E\{E(X / Y)\}=E(X)$
c) Suppose that X and Y are discrete random variables with joint probability density function
$f(x, y)=\left\{\begin{array}{lc}p(2 x y+x+y+1) & \mathrm{x}=0,1,2 \quad, \mathrm{y}=1,3 \\ 0 & \text { otherwise }\end{array}\right.$
I) Determine the value of P .
II) Determine the marginal density functions and

Hence check the independence of the random variable.
iii) Find the probability
a) $f(1,2)$
b) $f(X \leq 1 \quad \mathrm{Y}=1)$
d) Given that the $\operatorname{var}(\mathrm{x})=9$ and $\operatorname{var}(\mathrm{y})=4$ and $\ell_{x y}=\frac{-1}{6}$ compute variance

$$
\begin{equation*}
\text { of }[X-3 Y+3] \tag{4marks}
\end{equation*}
$$

e) Let Y be a continuous random variable. Show that the function

$$
f(y)=\left\{\begin{array}{lr}
\frac{1}{2} y, & 0 \leq y \leq 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Is a probability density function. Hence calculate

$$
P(0.5 \leq Y \leq 1) \text { and } \mathrm{P}(-\mathrm{I} \leq \mathrm{Y} \leq \mathrm{I})
$$

(6marks)
f) State the central limit theorem
g) State and prove the three properties of Bivariate conditional expectation

## SECTION B

QUESTION TWO( 15 marks)
a) ) Consider the following joint p.d.f of two independent random variable

$$
f(x, y)= \begin{cases}4 x y & 0 \leq x \leq 10 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

$$
\begin{aligned}
& T=X+Y \\
& Z=2 X-Y
\end{aligned}
$$

Determine whether Z and T are independent
b) Consider marks obtained by ten students in tests X and Y

| student | A | B | C | D | E | F | G | H | I | J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| X | 13 | 30 | 15 | 9 | 17 | 22 | 8 | 17 | 14 | 12 |
| Y | 21 | 12 | 19 | 22 | 18 | 13 | 25 | 15 | 20 | 16 |

Compute the rank correlation coefficient
(6 marks)
QUESTION THREE ( 15 marks)
a)Suppose that X and Y are two discrete random variables with the joint p.d.f

$$
f(x, y)=\left\{\begin{array}{l}
a(x y+x+1 / 2 y+1) \quad x=0,1 ; y=2,4 \\
0 \quad \text { elsewhere }
\end{array}\right.
$$

(i) Determine value of a
(2 marks)
(ii) Determine the joint moment generating function
(3marks)
(iii) Determine the mean of $x$ and that of $y$
(4 marks)
(iv) Determine the $\mathrm{E}(\mathrm{XY})$ hence check for independence
(3 marks)
(v) What is the correlation coefficient
(3 marks)

## QUESTION FOUR(15 marks)

a)Show that $\operatorname{var}(a x-b y)=a^{2} \operatorname{var}(x)+b^{2} \operatorname{var}(y)-2 a b \delta x y$
b) Using the moment generating technique show that the mean and the variance of the $\chi^{2}$ distribution are n and 2 n given that

$$
f(x)=\left\{\begin{array}{lr}
\frac{1}{\overline{n_{2}} 2^{\frac{n}{2}}} x^{\frac{n}{2}-1} e^{\frac{-x}{2}} & x>0 \\
0 & \\
0 & \text { elsewhere }
\end{array}\right.
$$

