

A Constituent College of Kenyatta University

UNIVERSITY EXAMINATIONS 2011/2012 ACADEMIC YEAR

2ND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF

BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE/TITLE: SMA 230 - VECTOR ANALYSIS

END OF SEMESTER: I DURATION: 3 HOURS

DAY/TIME: MONDAY 8.00 TO 11.00AM DATE:28.11.2011 (GS1)

Attempt question <u>ONE</u> in Section A and any <u>TWO</u> questions from section B

SECTION A

Question One (40 marks)

- a) Prove that if vectors \underline{a} and \underline{b} are not parallel and $\lambda \underline{a} + \beta \underline{b} = \underline{0}$, then $\lambda = \beta = 0$.
- b) Find the question of the place through A(1,2,3), B(4,2,5) and C(5,4,6).

(3 marks)

(4 Marks)

c) Show the relationship between the plane 2x + y - z = 8 and the line whose equation is $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ (4 Marks)

d) Find the angle between the plane 2x + y - 2z = 5 and the line $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+1}{4}$ (4 Marks) e) Show that the area of a parallelogram is equal to the cross product of the vectors defining the parallelogram. (5 Marks)

f) Show that if B(t) has a constant magnitude, then $\frac{dB}{dt}$ is perpendicular to \underline{B} , (5 Marks)

g) Show that
$$\frac{d}{dt}\left(v.\frac{dv}{dt} \times \frac{d^2v}{dt^2}\right) = v.\frac{dv}{dt} \times \frac{d^3v}{dt^3}$$
 (3 Marks)

- h) A curve has a parametric equation $x = 3\cos t$, $y = 3\sin t$, z = 4t, find i). The unit tangent vector T_{z} (3 Marks)
 - ii). The principle normal, \tilde{N} , the curvature k and radius of curvature ρ . (4 Marks) iii). The binormal B, torsion τ and radius of torsion δ . (5 Marks)

SECTION B

Question Two (15 marks)

- a) Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1, -2, -1) in the direction of the vector 2i j 2k. (5 Marks)
- b) Given $A = xz^3i + 2x^3yzj + 2yz^4k$, evaluate the curl of A. (3 Marks)
- c) i). Find the constant a, b, and c for V = (x+2y+az)i+(bx-3y-2)j+(4x+cy+2z)k to be irrotational
 - ii). Find the scalar potential (7 Marks)

Question Three (15 marks)

- a) Show that the diagonals of *a* parallelogram bisect each other. (5 Marks)
- b) Prove the sine rule (5 Marks)
- c) Prove that for any scalar function ϕ , the curl grad ϕ is zero.

(5 Marks)

Question Four (15 marks)

- a) State the Green's Theorem on the plane (5 Marks)
- b) Verify Green's theorem for $\[\prod_{c} (xy+y^2)dx+x^2dy \]$ where *c* is the closed curve bounded by y = x and $y = x^2$ (10 Marks)