A Constituent College of Kenyatta University
 UNIVERSITY EXAMINATIONS 2011/2012 ACADEMIC YEAR $2^{\text {ND }}$ YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE COURSE CODE/TITLE: SMA 230 - VECTOR ANALYSIS
 END OF SEMESTER: I
 DURATION: 3 HOURS
 DAY/TIME: MONDAY 8.00 TO 11.00AM DATE:28.11.2011 (GS1)

Attempt question $\underline{\boldsymbol{O N E}}$ in Section A and any $\underline{\boldsymbol{T W O}}$ questions from section B

SECTION A

Question One (40 marks)
a) Prove that if vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are not parallel and $\lambda \underset{\sim}{a}+\beta \underset{\sim}{b}=\underset{\sim}{0}$, then $\lambda=\beta=0$. (4 Marks)
b) Find the question of the place through $A(1,2,3), B(4,2,5)$ and $C(5,4,6)$.
c) Show the relationship between the plane $2 x+y-z=8$ and the line whose equation is

$$
\begin{equation*}
\frac{x-2}{1}=\frac{y-3}{2}=\frac{z+1}{4} \tag{4Marks}
\end{equation*}
$$

d) Find the angle between the plane $2 x+y-2 z=5$ and the line $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+1}{4}$ (4 Marks)
e) Show that the area of a parallelogram is equal to the cross product of the vectors defining the parallelogram.
(5 Marks)
f) Show that if $B(t)$ has a constant magnitude, then $\frac{d B}{d t}$ is perpendicular to $\underset{\sim}{B}$,
(5 Marks)
g) Show that $\frac{d}{d t}\left(v \cdot \frac{d v}{d t} \times \frac{d^{2} v}{d t^{2}}\right)=v \cdot \frac{d v}{d t} \times \frac{d^{3} v}{d t^{3}}$
(3 Marks)
h) A curve has a parametric equation $x=3 \cos t, y=3 \sin t, z=4 t$, find
i). The unit tangent vector $\underset{\sim}{T}$
(3 Marks)
ii). The principle normal, $\underset{\sim}{N}$, the curvature k and radius of curvature ρ.
(4 Marks)
iii). The binormal $\underset{\sim}{B}$, torsion τ and radius of torsion δ.

SECTION B

Question Two (15 marks)

a) Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of the vector $2 i-j-2 k$.
b) Given $\underset{\sim}{A}=x z^{3} i+2 x^{3} y z j+2 y z^{4} k$, evaluate the curl of A.
(3 Marks)
c) i). Find the constant a, b, and c for

$$
\underset{\sim}{V}=(x+2 y+a z) i+(b x-3 y-2) j+(4 x+c y+2 z) k \text { to be irrotational }
$$

ii). Find the scalar potential
(7 Marks)

Question Three (15 marks)

a) Show that the diagonals of a parallelogram bisect each other.
b) Prove the sine rule
c) Prove that for any scalar function ϕ, the curl $\operatorname{grad} \phi$ is zero.

Question Four (15 marks)

a) State the Green's Theorem on the plane
b) Verify Green's theorem for $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where c is the closed curve bounded by $y=x$ and $y=x^{2}$ (10 Marks)

