UNIVERSITY EXAMINATIONS 2013/2014 ACADEMIC YEAR
$2^{\text {nd }}$ YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCEINCE, BACHELOR OF EDUCATION ARTS, BA

COURSE CODE/TITLE: SMA 202 EXAMINATION- LINEAR ALGEBRA I
END OF SEMESTER: I
DAY/TIME: THURSDAY: 8.00-11.00AM
Instructions: Answer question ONE in Section A and any other TWO questions in Section B.

Section A

QUESTION ONE - (40 MARKS)
a. Define a low reduced echelon matrix
b. Reduce $\left(\begin{array}{cccc}1 & 2 & 3 & 1 \\ 2 & 1 & 2 & 0 \\ -1 & -2 & -1 & 1 \\ 1 & -1 & 3 & 3\end{array}\right)$ to row reduced echelon form (5 marks)
c. Determine the solution of the homogenous system $\begin{aligned} & a_{1} x+b_{1} y+c_{1}=0 \\ & a_{2} x+b_{2} y+c_{2}=0\end{aligned}$ expressing your answer in determinant form
d. A system of linear equations may have a unique solution, many solutions or no solution. Explain how you would know whether a particular system has any of the above solutions
(4 marks)
e. Explain how you would use the cramer's rule to determine the solution to a system of equations in n variables
(6 marks)
f. Determine the distance between the planes $x+2 y-2 z=3$ and $2 \mathrm{x}+4 \mathrm{y}-4 \mathrm{z}=7$
(4 marks)
g. Determine whether the given vectors in \mathfrak{R}^{4} are linearly dependent or not $(1,3,-1,4),(3,8,-5,7),(2,9,4,23)$
h. Define a vector space and state two examples of vector spaces

Section B

QUESTION TWO - (15 MARKS)

a. Let $A=\left(\begin{array}{ccc}2 & -4 & 6 \\ 3 & -6 & 1 \\ -2 & 5 & -2\end{array}\right)$. Use the method of the adjoint to find the inverse of A. hence

$$
\begin{equation*}
2 x-4 y+6 z=20 \tag{7marks}
\end{equation*}
$$

solve the system $3 x-6 y+z=22$
b. Let vectors $u_{1}, u_{2}, \ldots \ldots \ldots, u_{m} \in \mathfrak{R}^{n}$ and W be the set of all linear combinations of $u_{1}, u_{2}, \ldots \ldots, u_{m} \in \mathfrak{R}^{n}$. Prove that W is a subspace of \mathfrak{R}^{n}
c. Define a basis of a finite subspace of a vector space V. Determine whether or not $\{(1,1),(2,1)\}$ is a basis of \mathfrak{R}^{2}

QUESTION THREE - (15 MARKS)

a. Show that the lines $r=(3,5,7)+m(1,2,1)$ and $\mathrm{s}=(1,2,3)+n(2,3,5)$ do not meet.
b. Write the polynomial $v=t^{2}+4 t-3$ as a linear combination of the polynomials $e_{1}=t^{2}-2 t+5, e_{2}=2 t^{2}-3 t$ and $\mathrm{e}_{3}=t+3$
c. Find the line of intersection of the planes $3 x+2 y-4 z-6=0$ and $x-3 y-2 z-4=0$
(4 marks)

QUESTION FOUR - (15 MARKS)

a. Show that for any two matrices A and $\mathrm{B},(A-B)(A+B)=A^{2}-B^{2}$ if and only if A and B commute.
(5 marks)
b. Let $x=x_{1} i+x_{2} j+x_{3} k, y=y_{1} i+y_{2} j+y_{3} k$ and $\mathrm{z}=\mathrm{z}_{1} i+z_{2} j+z_{3} k$ be vectors. Show that $x .(y \times z)=\left|\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right|$
c. Determine the equation of the plane through the points $A(1,1,1), B(2,0,2)$ and $C(-1,1,2)$

