

UNIVERSITY

COLLEGE

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

ACMP 102: COMPUTER SYSTEMS

STREAM: BSC. (APPLIED COMP. SCIENCE) Y1 S1

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 19/12/2012

8.30 A.M. – 10.30 A.M.

INSTRUCTIONS

(b)

- 1. Answer question **ONE** and any other **TWO** questions
- 2. Marks are awarded for clear and concise answers

SECTION A (Compulsory)

QUESTION ONE COMPULSORY (30 MARKS)

(a) Briefly describe the following terms as used in today's world of computers.

(i)	Compiler	[2 mark]
(ii)	Addressing	[2 mark]
(iii)	Cache	[2 mark]
Explai	n the difference between machine language and assembly language.	[2 marks]

- (c) Give the standard logic symbols and a description of the operation of each of the following gates:
 - (i)AND gate(ii)NOT gate[4 marks]

(d)	With the aid of diagrams, explain the main difference between SRAMs a	nd DRAM s.
		[4 marks]
(e)	Explain the basic structure of a High Level Assembly program.	[2 marks]

(g) Convert the following decimal number to binary. (Show your working). [2 marks]42.0625

(g)	What is the LOOK scheduling policy for a disk system?	[2 marks]
(h)	Explain how an inkjet printer prints characters on a page.	[3 marks]
(i)	List the THREE techniques for performing I/O.	[3 marks]

(k) Complete the truth tables for the logic operations in the table below. [2 marks]

INPUTS				OUTPUTS	
Α	В	С	D	NAND	XOR A,B
LOW	HIGH	LOW	HIGH		

SECTION B (ANSWER ANY TWO QUESTIONS FROM THIS SECTION) QUESTION TWO (20 MARKS)

- (a) Give the key characteristics of each of the following memory types: [2 marks]
 (i) EPROM
 (ii) EEPROM
- (b) Draw a block diagram of a basic stored program computer at the register level, carefully label your diagram. [6 marks]
- (c) Explain the role of each of the main components in the machine code fetch/execute cycle of basic computer in (b) above. [5 marks]
- (d) A Boolean function is given by:

$\mathbf{F} = \mathbf{AB} + \mathbf{BC}$

Draw an implementation of the circuit using logic gates. [3 marks]

(e) List and briefly explain any **FOUR** functional groups of signal lines for PCI bus.

[4 marks]

QUESTION THREE (20 MARKS)

Briefly explain the characteristics that differentiate latches from flip-flops. Use the example of the S-R latch and the S-R flip-flop. [3 marks]

(b) For the following function $F(x, y, z) = \sum m(0, 1, 3, 5, 7)$ show:

(i)	The truth table	[1 mark]
(ii)	An algebraic expression in sum of minterm form	[1 mark]
(iii)	A minimum sum of product expression using Karnaugh map	[2 marks]
(iv)	The minterms of \mathbf{F} ' (complement of \mathbf{F}) in numeric form	[1 mark]

- (c) Draw a well labeled block diagram illustrating the memory hierarchy of computer system. [5 marks]
- (d) Using 8-bit two's complement integers, show how to perform the following computation. [3 marks] -25 + (-12)
- (e) Convert the following number to binary. (Show your working) [3 marks]

675₈

QUESTION FOUR (20 MARKS)

(a)	Define a bus and give its key characteristic.	[2 marks]
(b)	Draw a diagram showing the interconnection scheme for a bus.	[5 marks]
(c)	Explain the functions of the various units of the bus structure.	[3 marks]

- (d) Draw another block diagram showing memory chip organization of modern computers. [6 marks]
- (e) Write a High Level Assembly program to compute the function 2 + (7 X 3). Assume that the program reads in 16 bit integer values. The result of the computation may be left in any register. [4 marks]

QUESTION FIVE (20 MARKS)

(a)	Write short notes on each of the following parameters of a read/write operation on a disk:			
	(i)	Seek time	[2 marks]	
	(ii)	Rotational latency	[2 marks]	
	(iii)	Transfer time	[2 marks]	

- (b) Briefly explain the working principle of a typical laser printer. [3 marks]
- (c) Each peripheral device installed in a computer system requires an interface. Provide well labeled block diagrams showing one major characteristic of the interface to a peripheral from an I/O module. [4 marks]
- (d) Briefly describe reduced instruction set and complex instruction set computer processors and state which you would select for a special purpose arithmetic co-processor. [3 marks]
- (e) Draw a truth table for each of the following.
- (i) $\mathbf{A} + \mathbf{B} = \mathbf{F}$ (ii) $\mathbf{A} = \mathbf{B}$ (iii) $\mathbf{A}\mathbf{B} = \mathbf{F}$ (iv) \mathbf{A} NOR $\mathbf{B} = \mathbf{F}$ [4 marks]