

## COLLEGE

## UNIVERSITY EXAMINATIONS

## FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

## ACMP 102: COMPUTER SYSTEMS

STREAM: BSC. (APPLIED COMP. SCIENCE) Y1 S1
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 19/12/2012
8.30 A.M. - 10.30 A.M.

## INSTRUCTIONS

1. Answer question ONE and any other TWO questions
2. Marks are awarded for clear and concise answers

## SECTION A (Compulsory)

## QUESTION ONE COMPULSORY (30 MARKS)

(a) Briefly describe the following terms as used in today's world of computers.
(i) Compiler
(ii) Addressing
(iii) Cache
(b) Explain the difference between machine language and assembly language. [2 marks]
(c) Give the standard logic symbols and a description of the operation of each of the following gates:
(i) AND gate
(ii) NOT gate [4 marks]
(d) With the aid of diagrams, explain the main difference between SRAMs and DRAMs.
(e) Explain the basic structure of a High Level Assembly program.
(g) Convert the following decimal number to binary. (Show your working). [2 marks]

### 42.0625

(g) What is the LOOK scheduling policy for a disk system?
(h) Explain how an inkjet printer prints characters on a page.
(i) List the THREE techniques for performing I/O.
(k) Complete the truth tables for the logic operations in the table below.

| INPUTS |  |  | OUTPUTS |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | B | C | D | NAND | XOR A,B |
| LOW | HIGH | LOW | HIGH |  |  |

## SECTION B (ANSWER ANY TWO QUESTIONS FROM THIS SECTION) QUESTION TWO (20 MARKS)

(a) Give the key characteristics of each of the following memory types: [2 marks]
(i) EPROM
(ii) EEPROM
(b) Draw a block diagram of a basic stored program computer at the register level, carefully label your diagram.
(c) Explain the role of each of the main components in the machine code fetch/execute cycle of basic computer in (b) above.
(d) A Boolean function is given by:

$$
\mathbf{F}=\mathbf{A B}+\mathbf{B C}
$$

Draw an implementation of the circuit using logic gates.
(e) List and briefly explain any FOUR functional groups of signal lines for PCI bus.

## QUESTION THREE (20 MARKS)

(a) Briefly explain the characteristics that differentiate latches from flip-flops. Use the example of the $\mathbf{S}-\mathbf{R}$ latch and the $\mathbf{S}$-R flip-flop.
(b) For the following function $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum \mathbf{m}(\mathbf{0}, \mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{7})$ show:
(i) The truth table
(ii) An algebraic expression in sum of minterm form
(iii) A minimum sum of product expression using Karnaugh map
(iv) The minterms of $\mathbf{F}$ ' ( complement of $\mathbf{F}$ ) in numeric form
(c) Draw a well labeled block diagram illustrating the memory hierarchy of computer system.
(d) Using 8-bit two's complement integers, show how to perform the following computation.

$$
-25+(-12)
$$

(e) Convert the following number to binary. (Show your working)

## 6758

## QUESTION FOUR (20 MARKS)

(a) Define a bus and give its key characteristic.
(b) Draw a diagram showing the interconnection scheme for a bus.
(c) Explain the functions of the various units of the bus structure.
(d) Draw another block diagram showing memory chip organization of modern computers. [6 marks]
(e) Write a High Level Assembly program to compute the function $2+(\mathbf{7} \mathbf{~ 3})$. Assume that the program reads in 16 bit integer values. The result of the computation may be left in any register.
[4 marks]

## QUESTION FIVE (20 MARKS)

(a) Write short notes on each of the following parameters of a read/write operation on a disk:
(i) Seek time
(ii) Rotational latency
(iii) Transfer time
(b) Briefly explain the working principle of a typical laser printer.
(c) Each peripheral device installed in a computer system requires an interface. Provide well labeled block diagrams showing one major characteristic of the interface to a peripheral from an I/O module.
(d) Briefly describe reduced instruction set and complex instruction set computer processors and state which you would select for a special purpose arithmetic coprocessor.
(e) Draw a truth table for each of the following.
(i) $\mathbf{A}+\mathbf{B}=\mathbf{F}$
(ii) $\mathbf{A}=\mathbf{B}$
(iii) $\mathbf{A B}=\mathbf{F}$
(iv) $\mathbf{A}$ NOR $\mathbf{B}=\mathbf{F}$

