

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13S)

EBC 2208: STRENGTH OF MATERIALS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required

© 2015 -Technical University of Mombasa

Question One

a) State the assumptions in the Theory of Simple Bending

(9 marks)

b) Determine the moment of which can be resisted for the section of beam in figure 1 if the maximum bending stresses are limited to 100N/mm2 and 130N/mm2 at top and bottom respectively

(11 marks)

25mm

Question Two

Sketch the shear stress distribution for the section of beam for the section of beam in figure is subjected to a maximum shear force of 30KN (20 marks)

20mm

Question Three

Determine the extreme fibre bending stresses for the flitched beam shown in figure 3 and loaded as shown:

Esteel = 210KN/mm² Etimber = 8.5KN/mm²

1.2m

Question Four

(20 marks)

Determine the stability of the wall in figure 4 retaining water against:

Data:

- Density of concrete = 24KN/m³
- Density of water = 10KN/m³
- Coefficient of friction = 0.3
- Bearing capacity of soil = 250KN/mm²

Question Five

Sketch the distribution of bending stress across a T-section and loaded as shown in figures 5(a) and 5(b) (20 marks)

(20 marks)

20mm

А