

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 12S) DIPLOMA IN ARCHITECTURE (DA 12S)

EBC 2202: THEORY OF STRUCTURES I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER/NOVEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical tables/Calculator

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) A universal column section acting as a stanchion carries an axial and two further loads from incoming beams supported on brackets. The arrangement of loads may be assumed to be as that shown in figure 1. Determine the extreme fibre stresses acting at the corners, B, C and D. Properties of the universal column section.

$$
\begin{array}{ll}
\mathrm{D}= & 11,400 \mathrm{~mm}^{2} \\
\mathrm{Ixx}= & 143 \times 106 \mathrm{~mm}^{4} \\
\mathrm{Iyy}= & 48 \times 106 \mathrm{~mm}^{4} \tag{12marks}
\end{array}
$$

X

b) A rectangular strut is 150 mm wide x 120 mm thick. It carries a load of 180 KN at a eccentricity of 10 mm in the plane by bisecting the thickness. Find the maximum and minimum intensity of stress in the section.

Question Two

A horizontal beam of uniform section and 6 m long is 5.5 at its ends. Two concentrated loads of 48 KN and 40 KN at 1 m and 3 m respectively from the left hand support. Determine the position and magnitude of the maximum deflection if:
$\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{I}=85 \mathrm{X} 10^{-6} \mathrm{~m}^{4}$

Question Three

A hollow alloy tube, 5 m long with diameter 40 mm and 25 mm under a tensile load 600 KN . Calculate the buckling load for the tube when used as a strut with both ends pinned. Also find the safe load on the tube taking factor of safety as 4 .

Question Four

A column 3 m long hinged at its both ends is made up of two channels ISJC 200 and $225 \mathrm{~cm} \times 1 \mathrm{~cm}$ flange - plates as shown in figure 3

$$
1 \mathrm{~cm}
$$

Determine the maximum eccentricity for a load 40 tonnes from Y - Y axis, if the maximum permissible stress is $800 \mathrm{~kg} / \mathrm{cm}^{2}$, take $\mathrm{E}=2 \mathrm{X} 10 \mathrm{~kg} / \mathrm{cm}^{2}$. The properties of channel section are:
$\mathrm{A}=17.77 \mathrm{~cm}^{2}$
Iyy $=84.2 \mathrm{~cm}^{4}$
Distance of centroid from back of web $=1.97 \mathrm{~cm}$

Question Five

a) State Mohr's theorem for slope and deflection.
b) Figure 4 shows a loaded cantilever beam using Mohr's theorems, determine the deflection at points B, C and slope at C in terms of EI

C

