

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF

BACHELOR OF SCIENCE IN HORTICULTURE

ABE 2321 – HORTICULTURAL STRUCTURES

DATE: DECEMBER 2013

TIME: 2HOURS

(6Marks)

(3Marks)

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE – 30 MARKS

- (a) Failures in green houses may trigger heat loss. Briefly explain the following types of heat losses that are likely to occur in green houses structures.
 - (i) Conduction heat loss
 - (ii) Infiltration heat loss
 - (iii) Perimeter heat loss
- (b) Define the following concepts:
 - (i) Psychometric chart
 - (ii) Storage
 - (iii) Moisture isotherm
- (c) Protected cultivation is gaining popularity in Kenya. Differentiate between the following structures.
 - (i) Greenhouse and a tunnel
 - (ii) Cold bed and hot bed (4Marks)
- (d) Briefly describe the following green house design consideration parameters.
 - (i) Greenhouse orientation

(ii) Environmental control	
----------------------------	--

(iii)	Light	(9Marks)
(111)	Ligin	()Warks

- (e) Using examples, describe three (3) ways of classifying farm structures. (6Marks)
- (f) Outline four (4) factors to be considered when sitting a greenhouse structure. (2Marks)

QUESTION TWO – 20 MARKS

- (a) Briefly explain any four (4) climatic elements that can influence the quality of environment in a horticultural structure.(8Marks)
- (b) Briefly outline the four phases of developing a horticultural structure. (8Marks)
- (c) A 8m long, 5m wide and 3m high greenhouse has two windows with a total area of $1m^2$ and a door of area $1.5m^2$ area for ventilation. Calculate conduction heat that can be experienced in the greenhouse when the temperature outside is 15^0 and temperature inside the greenhouse is 30^0 C.

(4Marks)

QUESTION THREE – 20 MARKS

- (a) Using examples, briefly describe the following criteria of classifying storage structure. (9Marks)
 - (i) Classification based on duration of storage
 - (ii) Classification based on size/scale of storage
 - (iii) Classification based on the principle of storage
- (b) Outline the steps of carrying out an economic planting process for horticultural structures.

(6Marks)

- (c) During a practical class, 2nd year students in Meru University obtained the air condition of a greenhouse. The 8m³ per min of air at 2⁰C dry condition and 100% relative humidity condition was heated with 16m³/min of air at 29⁰C dry bulb temperature and 50% humidity ratio. Assuming sea level condition, calculate
 - (i) Dry bulb temperature of the mixture
 - (ii) Humidity ratio of the mixture
 - (iii) Enthalpy of the mixture

(5Marks)

QUESTION FOUR – 20 MARKS

(a) Briefly explain the significance of crop storage towards achievement of food security in Kenya.

(8Marks)

(b) Briefly explain any four (4) phychometric chart parameters. (8Marks)

(c) The air in a storage room has a dry bulb temperature of 15^oC and 30% relative humidity.
 Determine any other four (4) air properties in the room. (4Marks)

QUESTION FIVE – 20 MARKS

- (a) With an aid of a diagram, outline the major types of projections that can be used to present a proposed horticultural structure drawing.
 (4Marks)
- (b) Before any horticultural structure is laid, surveying the site has to be carried out, briefly describe the process of surveying.(5Marks)
- (c) State any two advantages of using drip irrigation systems in greenhouse crop production.

(2Marks)

- (d) State any two advantages and two disadvantages of using glass fibre as a glazing material in green houses.
 (2Marks)
- (e) Assume a 1:3:5 cement-sand –stone-concrete mix by volume, using naturally moist aggregates and adding 62 litres of water. Calculate the basic strength and volume of the mix if 2 bags of cement are used.

Take:

Moisture content of sand: 4%

Moisture content of stones: 1.5%

Bulk density of stone: 1400kg/m³

Bulk density of stone:1600kg/m³

Solid density of aggregate material: 2650kg/m³

Solid density of cement; 3100kg/m³

Density of water 1000kg/m³

(7Marks)