UNIVERSITY EXAMINATIONS 2013/2014 ACADEMIC YEAR $1^{\text {st }}$ YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF
EDUCATION SCIENCE, BACHELOR OF EDUCATION ARTS,
BACHELOR SCIENCE, BACHELOR OF ARTS

COURSE CODE/TITLE: SMA B103 ANALYTICAL GEOMETRY

END OF SEMESTER: II
DURATION: 3 HOURS
DAY/TIME: THURSDAY 8.00 TO 11.00AM DATE: 9.04.2014 (LTN)

QUESTION ONE [40 MARKS]
a) Find an equation for a circle centered at $(1,-5)$ and tangent to the line $3 x+4 y=8$ [4 marks]
b) Show that $\quad 2-\tan ^{2} A=2 \sec ^{2} A-3 \tan ^{2} A$
c) A curve has the equation $x=\frac{\sqrt{144-16 y^{2}}}{3}$. Find the equation of the
i) tangent at $\left(2, \frac{3 \sqrt{3}}{3}\right)$
ii) Normal at $\left(2, \frac{3 \sqrt{3}}{3}\right)$
[5 marks]
d) A portion of the white house lawn is in the form of an ellipse. It is 1060 feet long and 890 feet wide. Write an equation for the lawn
e) In a rectangle $A B C D$, the equation of line $A B$ is $2 y=x+3$. Given that the coordinate of C is $(3,2)$ find i) the equation of $B C$ ii) the equation of $C D$ and iii) the coordinate of B [6 marks]
f) Given that $\sin A=\frac{12}{13}$ where $90<A<180$ and $\tan B=\frac{4}{3}$ where $180<B<270$, find

$$
\text { i) } \sin (A-B) \text { ii) } \cos (A-B) \text { iii) } \tan (A-B)
$$

g) Find the polar form of the $Z=-1+\sqrt{3}$

QUESTION TWO [15 MARKS]

a) Draw the graph of $y=2 \sin (2 x+30)$ and that of $y=\cos (x+10)$ on the same set of axes for $0<x<360$.
b) Using your graph
i) To find the amplitude and the translation factor of each graph [4marks]
ii) Solve the equation $2 \sin (2 x+30)-\cos (x+10)=0$.

QUESTION THREE [15 MARKS]

a) Show that the general equation of an ellipse with horizontal major axis is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
b) Show that the area of allipse is given by $A=\pi a b$

QUESTION FOUR [15MARKS]

a) Solve the equation $\cos 3 x+\cos x=0$
[6 marks]
b) Express each of the following in the form $R \sin (x \pm \alpha)$ where $\mathrm{R}>0$ and $|\alpha|$ is as small as possible
i) $8 \cos x-6 \sin x$ ii) $-8 \cos x+6 \sin x$

