

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2013/2014

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE & TECHNOLOGY

(MAIN CAMPUS)

SCS 104: ELECTRONICS

Date: 29th November, 2013

Time: 11.00 a.m. - 1.00 p.m.

INSTRUCTIONS:

- a) Attempt Question ONE and any other TWO complete questions.
- b) Diagrams, where necessary should be clearly drawn and labeled.

Q1 (a) (I) What is a semiconductor element?

(ii) State the factors that influence electrical conductivity in semiconductor materials; and differentiate between intrinsic and extrinsic conductivities as applied to semiconductors.

5 marks

1 mark

(iii) Explain, giving relevant sketches, the formation of either p-type or n-type material.

5 marks

(iv) Determine the number of density atoms which has to be added to an intrinsic Ge semiconductor to produce an n-type material of conductivity 5 Siemens/cm given that the mobility of electrons in the n-type material is 3850 cm2/volt sec. Take electric charge, e = 1.60 x 10⁻¹⁹ Coulombs.

5 marks

(b) (i) Explain the essence of transistor biasing.

2 marks

(ii) State the factors that affect the operation / or performance of a transistor amplifier; and give the classification of the amplifiers based on one of the factors that you have stated.

5 marks

 State <u>one</u> structural and <u>one</u> operational difference between FETs and Bipolar transistors.

2 marks

(c) The circuit drawn below is that of a self-bias transistor anaplifier circuit.

Explain the function of C1, C2, C3, R1 and R2

5 Marks

6

SECTION II

Answer any Two complete questions from this section

Q2 (a) Explain:

(i) The occurrence of avalanche and zener breakdowns in p-n junction.

4 marks

(ii) The operations and at least one application of photo diode.

4 marks

(b) The circuit drawn below depicts a typical application of a zener diode.

Assume that the supply voltage, v_s is 9 volts, and that the zener voltage, $V_z = V_o = 6 \text{ V}$ If the maximum zener current that can safely flow is 20 mA.

i) Determine the value of the series resistance, R

3 marks

ii) If the load resistance, R_L of 1 KΩ is connected across the zener diode, calculate the load current, I_L and the zener current, I_z.

4 marks

iii) Calculate the maximum value of R_L that can be used.

3 marks

iv) Explain the role of zener diode in this circuit.

2 marks

Q3. (a) Draw and clearly label the a.c equivalent circuit of a transistor amplifier using h-parameters; and explain the significance of each parameter.

6 marks

(b) The h- parameters of a transistor used as an amplifier in common emitter(CE) configuration are:

 $h_{ie} = 800 \Omega$, $h_{fe} = 46$, hoe = 80×10^{-6} Siemens, and hre = 5.4×10^{-6}

If the load resistance is 5 K Ω and the effective source resistance is 500 Ω ,

_			
Cal	and	ate:	tha-

		Q	(i)	Current gain	4 m	narks		
			(ii)	Input resistance	4 m	narks		
			(iii)	Voltage gain	4 m	narks		
			(iv)	Power gain, in dB	2 m	narks		
Q4	(a)	Wha	t is wav	e rectification, and what is / are its essence	in power supp	ly?		
					4 m	narks		
	(b)	(i)	Draw a complete power supply circuit, and explain the operations of each component / block.					
		-			10	Marks		
		(ii)	Sketc	the expected waveform(s) at the output of	every stage.	marks		
		 (iii) Explain the major challenge(s) of using centre-tap transformer at the rectification stage. 						
						Marks		
					3			
Q5 (a)		State	the diffe	rence(s) between:				
		(i)	JFET	and MOSFET	2 m	arks		
		(ii)	N-cha	nnel and P-channel FET.	2 m	arks		
	(b)	Draw the structural diagram of a P-channel enhancement MOSFET and explain its operation. Sketch the expected current-voltage curves.						

8 marks

(c) The circuit diagram below is that of FET amplifier with a gate-bias voltage, V_{GG}.

The operating parameters are: $I_{DSS} = 10 \text{ mA}$, $V_p \{ = V_{GS} \text{ (off)} \} = -3 \text{ V}$, $V_{DD} = 25 \text{ V}$, $I_D = 5 \text{ mA}$, and VDS = 5 V, determine:

V_{GG} and R_D, state any assumption made.

5 marks

(ii) The voltage gain in dB.

5 marks