

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2013/2014

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE & TECHNOLOGY

(MAIN CAMPUS)

SCS 105: ENGINEERING MATHEMATICS

Date: 27th November, 2013

Time: 11.00 a.m. - 1.00 p.m.

INSTRUCTIONS:

- a) Attempt Question ONE and any other TWO questions.
- b) Question ONE carries 30 marks. Questions 2-5 carry 20 marks each.
- c) SWITCH OFF you MOBILE PHONES during this exam.

PART A - 30 Marks

Question One (30 marks)

- a. State the ε − δ definition of a limit and compute the limit of the function lim_{x→0} sin x / x using L'oHopital's rule.
- b. Distinguish between an even function and an odd function hence show that if f(x) is even the $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ 5marks
- c. Use the product rule to find the differential coefficient of $y = \sin(t) \cos(3t)$.

 4marks
- d. Evaluate the definite integral $\int_0^{\pi/6} \sin(3x+2) dx$ 4 marks
- e. If $f(x) = 2x^5 4x^3 + 3x 5$ finf f''(x) 4marks
- f. State chain rule. Apply chain rule and product rule combined to find the first derivative of $y = e^{-3x} + \sin(2x)$ 4marks
- g. Supplies are dropped from a helicoptor and the distance fallen in a time t seconds is given by $x = \frac{1}{2}gt^2$, where $g = 9.8m/s^2$. Determine the velocity and acceleration of the supplies after it has fallen for 2 seconds. 5marks

PART B - 20 Marks Each

Question Two (20marks)

- a. The velocity of a spring is found to be V = 6 sin(3nt). Assuming that the spring is perfect, so that v =(1/k)(dF/dt), where k is the spring constant (known to be 0.5), v the velocity, and F the force operating on the spring, find the force, given that it is 0N initially.
 10 marks
- b. Express the partial fractions of $\frac{3x}{1+x-2x^2}$ and hence evaluate $\int \frac{3x}{1+x-2x^2}$

10 marks

Question Three (20marks)

A car is travelling such that its distance, s (m), from its starting position after time t (s) is

$$s = \frac{1}{15}t^3 + 2t, \qquad 0 < t < 10$$

$$s = 22(t - 10) + 86.67, t \ge 10$$

- i. What is its average velocity in the first 10 s?
- ii. Give the velocity as a function of time.
- iii. What is the instantaneous velocity when (i) t = 5, (ii) t = 10, and (iii) t = 15?
- iv. What is the average acceleration for the first 10 s?
- v. What is the average acceleration between t = 10 and t = 15?
- vi. Give the acceleration as a function of time.
- vii. What is the instantaneous acceleration when (i) t = 5, (ii) t = 10, and (iii) t = 15?

 20 marks

Question Four (20 marks)

Derive the integration by parts formula and use it to find

$$\int x \frac{x}{(x^2+1)} dx$$
 20marks

Question Five(20marks)

- h. The potential due to a point charge Q at a position r from the charge is given by $V = \frac{Q}{4\pi\varepsilon_0 r}$ where ε_0 , the permittivity of free space, $\approx 8.85 \times 10{-}12$ Fm-1 and $\pi \approx 3.14$. Given that Q = 1 C, find the electric field strength at a distance of 5m using $E = -\mathrm{d}V/\mathrm{d}r$.
- i. Find the area enclosed between the x axis and the curve $y = x^3 + 2x^2 + x + 1$ between x = -1 and x = 2 10marks.