

UNIVERSITY OF NAIROBI

THIRD YEAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE BY DISTANCE LEARNING 2013/2014

SPH 302: THERMODYNAMICS

Date:	Time: 1 1/2 Hours
~.~.	

- This paper consists of five (5) Questions
- Attempt any <u>THREE</u> Questions

Constants

Gas $\overline{\text{constant}}$ R = 8.31 JK⁻¹ mol ⁻¹ Atmospheric Pressure = 1.01 × 10⁵ NM⁻²

Question 1

- (a) State the 2ND Law in terms of Entropy and explain the physical significance of the 2ND law of thermodynamics. [6 marks]
- (b) A hypothetical refrigerator takes 1000 J of heat from a cold reservoir at 100K and ejects 1200 J of heat to a hot reservoir at 300K.
 - (i) Determine work done by the refrigerator
 - (ii) What happens to the entropy of the universe?
 - (iii) Does this system violate the 2nd Law of thermodynamics? [8 marks]
- (c) A carnot cycle operates between 200 °C and 1200 °C. Calculate its thermal efficiency if it operates as a heat engine and its coefficiency of performance if it operates as refrigerator [6 marks]

Question 2

- (a) Differentiate between the following terminologies in thermodynamics
 - (i) State variable and state function
 - (ii) Closed and open system
 - (iii) Reversible and irreversible processes
 - (iv) Heat and work

[8 marks]

- (b) Starting from the same initial point, show the following processes both on a P-V and T-S diagrams for an ideal gas
 - (i) PV = constant

(ii) $PV^{\gamma} = constant$

(iii) P = constant, and

(iv) V = constant.

[8 marks]

(b) Explain the Zero law of Thermodynamics stating its significance [4 marks]

Question 3

- (a) State first law of thermodynamics giving its physical significance and its limitations. [6 marks]
- (b) An ideal monoatomic gas ($\gamma = 5/3$) expands reversibly from a state V₁, P₁ to a volume V₂. Calculate the work done by the gas if the change takes place
 - (i) isothermally
 - (ii) adiabatically

[8 marks]

- (c) An ideal gas is taken through the cyclic process ABCA as shown in the figure below. Determine
 - (i) The net heat transferred to the system in one cycle
 - (ii) The net heat input for the reversed cycle ACBA.

[6 marks]

Question 4

- (a) Explain the following
 - (i) the effect of pressure on the melting point of ice and boiling point of water.
 - (ii) Why it is advisable to cover cooking pots when boiling food

[6 marks]

- (b) (i) Explain Entropy and principle of increasing entropy
 - (i) A solid at low temperature has its specific heat capacity given by

 $C = aT + BT^3$ where a and b are constants. Determine the entropy of the solid as a function of temperature if the entropy is zero at T = 0. [10 marks]

(c) Which gives the greater increase in the efficiency of a carnot engine: Increasing the temperature of the hot reservoir or lowering the temperature of the cold reservoir by the same amount? [6 marks]

Question 5

- (a) Explain the difference between the following devices
 - (i) Heat engine and refrigerator
 - (i) Carnot engine and real engine

[9 marks]

- (b) An inventor claims to have developed an engine which takes in 11×10^7 J at 400K, rejects 5×10^7 J at 200K and delivers 16.67 kW hours of work. Would you advice investing money in this project? Explain [5 marks]
- (b) Explain the third law of thermodynamics and show that the following material parameters vanish as a consequence of the 3RD law of Thermodynamics
 - (ii) heat capacity, Cv
- (ii) Volume expansivity, β

[6 marks]