

UNIVERSITY OF NAIROBI

THIRD YEAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE BY DISTANCE LEARNING

FIRST SEMESTER EXAMINATIONS 2012/2013

SPH 302: THERMODYNAMICS

Date: Time: 1 1/2 Hours

- This paper consists of five (5) Questions
- **Attempt any THREE Questions**

Constants

Gas constant R = 8.31 JK⁻¹ mol ⁻¹ Atmospheric Pressure = $1.01 \times 10^5 \text{ NM}^{-2}$

Question 1

- Differentiate between the following terminologies in thermodynamics (a)
 - Adiabatic and diathermal wall (i)
 - (ii) State variable and state function
 - (iii) Extensive and intensive variables
 - (iv) Heat and work

[8 marks]

(b) Explain the Zeroth Law of thermodynamics and state its physical significance.

[4 marks]

- (c) Starting from the same initial point, show the following processes both on a P-V and T-S diagrams for an ideal gas
 - PV = constant(ii) PV^{γ} = constant (i) P = constant, and[8 marks] (iii) (iv) V = constant.

Question 2

- State in formulation the first law of thermodynamics giving its physical (a) (i) significance and its limitations.
 - (ii) Differentiate between isothermal and adiabatic processes. [8 marks]
- (b) An ideal monatomic gas expands reversibly from state V_1 , P_1 to a volume V_2 . Derive expression for work done by the gas if the change takes place
 - Isothermally adiabatically [8 marks] (i) (ii)
- (c) Explain the following
 - Air escaping from an air hose at a gas station always feels cold. (i)
 - The specific heat at constant pressure, C_P, is always greater than the (ii) specific heat at constant volume C_V . [4 marks]

Question 3

- (a) State the mandates of the 2ND Law of thermodynamics and explain the physical significance of the 2ND law of thermodynamics. [6 marks]
- (b) (i) Explain **Entropy** and state its significance
 - A hypothetical device takes 1000 J of heat from a hot reservoir at 300 K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work. Does the device violate the 2ND Law?
- (c) A carnot cycle operates between 200 °C and 1200 °C. Calculate its thermal efficiency if it operates as a heat engine and its coefficiency of performance if it operates as
 - (i) Refrigerator (ii) Heat pump

Question 4

- (a) Explain the following terms
 - (i) A phase
 - (ii) Component
 - (iii) Complete Thermodynamic equilibrium
- (b) The Clausius-Clapeyron equation for the slope of a phase boundary is given by

 $\frac{dP}{dT} = \frac{L}{TdV}$ where symbols have their usual meanings.

- (i) Sketch the P-T projections for a substance which expands on melting and one which contracts on melting giving examples of such substances
- (ii) Explain the effect of pressure on the melting point of ice.
- (iii) Explain why it is advisable to cover cooking pots when boiling food
- (iv) Will an egg boil faster on top of Mt. Kenya or at the coast. [10 marks]
- (c) Explain the 3RD law of thermodynamics and list at least TWO consequences of the 3RD Law. [5 marks]

Question 5

- (a) State the "**Engine**" and the "**Refrigerator**" Statements of the 2ND Law and give an example of a perpetual machine of the second kind. [5 marks]
- (b) Explain the following
 - (i) Carnot engine
 - (ii) why efficiency of real engines is always less than that of Carnot engine
 - (iii) Hybrid engine giving its advantages over conventional engines

[10 marks]

[6 marks]

[5 marks]

(c) An inventor claims to have developed an engine which takes in 11×10^7 J at 400K, rejects 5×10^7 J at 200K and delivers 16.67 kW hours of work. Would you advice investing money in this project? Explain **[5 marks]**