

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2013/2014**

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF EDUCATION (HOMA BAY CAMPUS)

EDU 803: EDUCATIONAL STATISTICS & COMPUTER APPLICATION

Time: 9.00 - 12.00 noon Date: 16th April, 2014

MASENO UNIVERSITY **EDU 803: EDUCATIONAL STATISTICS &** COMPUTER APPLICATION (HOMABAY)

SEC	TION	N 1: E	DU	JC	AT)	ON	AL	STA	TIST	rics	¢			
INST	RUC	TION	S: A	nsv	ver	any	TW	O Qu	estion	s fron	this	sectio	n. You are	
	provi	ided w	vith	tab	le a	nd g	graph	ı pap	ers					
Q1.	Given the following variables X and Y													
	Varia	ble X	61		60	4	1	22	21					
	Variable Y 56 61 36 21 26													
	(i) Calculate the relationship using Pearson's product moment													
	Correlation - coefficient.										(12marks)			
	(ii)	Deter	min	e if	the	calc	ulate	d val	ue is s	ignific	ant	(3m	arks)	
Q2.	The fo	ollowi	ng s	core	es w	ere	obtai	ned w	hen a	group	of 12	studer	nts were test	ed
	on two	o tests	. Te	st A	and	i Te	st B.							
	Test A	٨ 6	6	8	9	7	10	8	9	12	10	11	12	
	Test E	6	7	8	8	9	9	10	10	11	12	13	14	
	(i)	Plot a	sca	tter	diaş	gram	n for	the at	ove d	ata (us	e grap		er). arks)	

- Compute the spearman correlation co-efficient (rho) for the above (ii) data. (10marks)
- Determine if the calculated value is significant at p≤0.01 and 0.05 (iii) level of significance (2marks)

- Q3. From the list of data given below:
- 23 17 29 23 27 23 15 21 26 27 29 22 19 21 20 26 24 34 25 17 32 26 24 33 27 32 35 31 28 22 24 28 20 25
 - (i) Make a cumulative frequency above and below for each class interval (i=3). (3marks)
 - (ii) Plot (on graph papers) a histogram and frequency polygon for the data in Q 3(i) above). (10marks)
 - (iii) Comment on the distribution of the scores, whether positively or negatively skewed. (2marks)

SECTION 1: COMPUTER APPLICATION

INSTRUCTIONS: Answer any 3 questions

Question 1:

a) A researcher is interested in determining whether Students' Gender (Boy or Girl) is associated with preference for subject choice (Geography or History) and collected the following data from a sample of 15 teachers.

Table 2: Teachers and Teaching Subject

No	Students' Gender	subject choice
1.	Boy	Geography
2.	Girl	History
3.	Girl	Geography
4.	Boy	Geography
5.	Girl	History
6.	Boy	History
7.	Girl	Geography
8.	Girl	History
9.	Boy	Geography
10.	Boy	Geography
11.	Girl	History
12.	Girl	History
13.	Boy	Geography
14.	Girl	History
15.	Girl	History

i. Enter the data into the SPSS data editor and print

(4 marks)

- ii. Analyze sample data using SPSS to:
 - a. Analyze sample data using Pearson's Chi-square test (Chi-square test of association) (\(\chi^2\)) to find out whether there is association between

Teachers' Gender (Boy or Girl) and teaching Subject (Geography or History) (4marks)

 Produce an output of display of clustered bar charts for Teachers' Gender (Boy or Girl) and teaching Subject

(2marks)

Question 2:

 The following is a sample of 18 students and their performance in a Chemistry test.

Table 2: Student's performance in a Chemistry test

NO.	Marks	Gender	NO.	Marks	Gender
1	75	Boy	10	66	Girl
2	58	Girl	11	56	Boy
3	79	Boy	12	54	Girl
4	60	Boy	13	55	Boy
5	56	Girl	14	49	Girl
6	56	Boy	15	53	Girl
7	65	Girl	16	54	Boy
8	61	Boy	17	48	Girl
9	48	Girl	18	58	Boy

a) Enter the data into the SPSS data editor and print.

(3 marks)

- b) Analyze sample data using SPSS to:
 - Find the means, mode, standard deviation, maximum, minimum, kurtosis of the samples. (3marks)
- Give output of a pie charts to show the distributions of the students by gender (1 marks)
- Use an appropriate statistical test to find out whether the mean difference performance in Chemistry tests between boys and girls statistically significant. p = 0.05 (4marks). (3 marks)

Question 3:

Some 13 students sat for Mathematics Examinations Paper 1 and Paper 2 and their records of performance were as shown.

Table 3: Student Performance in Mathematics Examination

Student	Paper 1(x ₁)	Paper 2 (x ₂).				
1 -	58					
2	60	64				
3	57	63				
4	58	57				
5	56	58				
6	63	59				
7	58	63 61				
8	60					
9	76	58				
10	62	56				
11	73	59				
12	58	61				
13	59	64				

- Enter the data into the SPSS data editor and print.
- (3 marks)

- ii. Analyze sample data using SPSS to:
 - a) Find the means, mode, standard deviation of the two samples (x₁, x₂)
 (2marks)
 - b) Give outputs of a histograms with a normal curves to show the distributions the two samples (x₁, x₂). (2 marks)
 - c) Use an appropriate statistical test to find out whether the mean difference Paper 1(x₁) and Paper 2 (x₂).is statistically significant. p = 0.05 (3 marks)

Question 4:

The data in Table 4 is for a study a county school to compare the students' performance from three sub counties (A, B and C) in KCPE examinations.

Table 4: Students' performances in KCPE examinations.

NO	SUB COUNTY	student performance in KCPE						
1.	В	365						
2.	A	362						
3.	C	367						
4.	В	356						
5.	A	358						
6.	C	361						
7.	A	363						
8.	В	372						
9.	A	369						
10.	C	366						
11.	В	362						
12.	В	351						
13.	A	349						
14.	C	352						
15.	С	356						

- Enter the data into the SPSS data editor and print (3marks)
- Give an output of a pie chart to show the distributions of the students by sub-counties. (2 marks)
- iii. Analyze sample data using:
 - a. ANOVA, giving the descriptive analysis and find out if the test is statistically significant at p=0.05 (2 marks)
 - Tukey post hoc analysis to show the significance of the difference in student performance in in KCPE examinations amongst the 3 subcounties

(3 marks)

Question 5:

a) The Table 5 shows the CAT(x) scores and End Term Exam(y) scores of a sample of 12 students.

Table 5: The CAT(x) scores and End Term Exam(y) scores of a sample of 12 students.

CAT(x)	62	52	72	46	63	57	55	59	48	42	68	60
End Term Exam (y)	247	225	260	218	249	228	250	245	215	240	252	255

- Enter the data into the SPSS data editor and print marks)
- (3

- ii. Use SPSS to ::
 - a) Find Pearson's Product-Moment Correlation coefficient (r) and describe the nature of relationship between CAT(x) and End Term Exam (y) (2 marks)
 - b) Obtain a scatter diagram of the data CAT(x) scores and End Term Exam (y) scores

(2 marks)

 Perform a simple regression analysis and determine the Least Squares Regression Line equation of Y on X

(3 marks)