UNIVERSITY EXAMINATIONS 2017/2018

COURSE CODE: MAT 318

COURSE TITLE: FLUID MECHANICS I

INSTRUCTIONS

Answer QUESTION ONE (COMPULSORY) and ANY OTHER TWO questions.

Symbols used have their usual meaning in fluid mechanics.

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) Explain the following properties of fluids
 - i) Compressibility
 - ii) Specific heat
 - iii) Enthalpy

(6 Marks)

b) State the continuum hypothesis.

(2 Marks)

c) Prove that for an ideal gas $C_p - R = C_v$ where C_p is specific heat at constant pressure, C_v is specific heat at constant volume and R is ideal gas constant.

(9 Marks)

d) Show that the stream function ψ is a constant along a stream line.

(4 Marks)

e) The three components of a fluid velocity in a flow field are given by:

$$u = x^2 + y^2 + z^2$$

$$v = xy + yz + z^2$$

$$w = -3xz - \frac{z^2}{2} + 4$$

i) Show that this flow obeys the mass conservation equation.

(4 Marks)

ii) Determine whether the flow is irrotational or rotational.

(5 Marks)

QUESTION TWO (20 MARKS)

a) The velocity in a certain flow field is given by the equation $v = 3x^2\vec{i} + 2x^2z\vec{j} + 5yz\vec{k}$ Determine the expressions for the three rectangular components of acceleration.

(6 Marks)

b) The velocity component of a two dimensional flow are $u = \frac{x}{1+t}$, $v = \frac{-y}{1+t}$, determine the pathlines. (7 Marks)

c) Given the stream function for a flow as $\psi = 4(x^2 - y^2)$. Show that the flow is irrotational. (7 Marks)

QUESTION THREE (20 MARKS)

- a) Derive the mass conservation equation for an ideal fluid by considering a fluid element. (9 Marks)
- b) The stream function for a given two dimensional flow field is:

$$\phi = 5x^2y - \frac{5}{3}y^3$$

Determine the corresponding velocity potential. ψ

(6 Marks)

c) The velocity component of a two dimensional flow are $u = \frac{x}{1+t}$, $v = \frac{-y}{1+t}$ show that the streamlines are a constant. (5 Marks)

QUESTION FOUR (20 MARKS)

- a) State Bernoulli's equation for incompressible fluid flow. (2 Marks)
- b) Starting with Euler's Equation of motion derive Bernoulli's equation. (11 Marks)
- c) A certain incompressible two-dimensional flow field has the velocity component in the y direction given by the equation:

$$v = xy(3+x).$$

Determine the velocity component in the x-direction so that the mass conservation equation is satisfied. (7 Marks)

QUESTION FIVE (20 MARKS)

a) Show that the streamlines for a flow whose velocity components are $u = c(x^2 - y^2)$ and v = -2cxy where c is a constant are given by the equation

$$x^2y - \frac{y^3}{3} = k$$
 where k is a constant. (8 Marks)

- b) A flow field has the stream function $\psi = y(3x^2 y^2)$
 - i) Determine velocity components. (4 Marks)
 - ii) Show that the flow is irrotational. (4 Marks)
 - iii) Show that this flow satisfies the equation of continuity. (4 Marks)