UNIVERSITY OF KABIANGA **UNIVERSITY EXAMINATIONS** MAT 214: VECTOR ANALYSIS EXAM 1ST SEM 2016/2017

INSTRUCTIONS: Answer ALL Questions in section A and ANY TWO in section B. SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION (30MKS)

Question One (30mks)

a) If $A = 5t^2i + tj - t^3k$ and B = sin t i - costj find

(i)
$$\frac{d}{dt}$$
 (A.B) (3mks)

(ii)
$$\frac{d}{dt}$$
 (A X B) (3mks)
(iii) $\frac{d}{dt}$ (A .A) (3mks)

(iii)
$$\frac{d}{dt}$$
 (A.A) (3mks)

b) Find the area of the triangle having vertices at p(1,3,2) Q(2,-1,1) R(-1,2,3)

c) If
$$\emptyset$$
 (x, y, z) = $3x^2y - y^3z^2$, find $\nabla \emptyset$ at the point (1,-2,-1) (3mks)

d) If
$$\vec{A} = x^2 y \hat{j} - 2xz \hat{j} + 2yz \hat{k}$$
, find the curl \vec{A} (3mks)

e) Find the total work done in moving a particle in a force field given by
$$\vec{F} = 3xy$$
 $\hat{f} + 10X$ \hat{k} , along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t=2 (5mks)

f) Let
$$\vec{F} = 2xz \vec{j} + 10x\hat{k}$$
. Evaluate $2xz\hat{j} - x\hat{j} + y^2 \hat{k}$.

$$\iiint \vec{k} \vec{F} \cdot dv$$
, where V is the region bounded by the surfaces $\vec{x} = 0, x = 2, y = 0, y = 6, z = x^2, z = 4$ (5mks)

SECTION B: ANSWER ANY TWO QUESTIONS IN THIS SECTION

Question Two (20mks)

a) Prove that a cylindrical coordinate system is orthogonal (9mks)

- b) A particle moves along a curve such that its acceleration given parametrically is $X=e^{-3t}$, y=2 sin 3t, z=2 cos3t. Given that velocity and displacement were initially zero, find the full expression of the velocity and displacement at time t. (7mks)
- c) Determine the value of a,b and c for which the vector $\vec{r} = (x + 2y + az)\hat{i} + (bx + 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational. (4mks)

a) A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \,\hat{\imath} + \sin \omega t \,\hat{j}$ where ω is a constant. Show that The velocity \vec{v} of the particle is perpendicular to \vec{r} (5mks) (i) The acceleration \vec{a} is directed toward the origin and has magnitude (ii) proportional to the distance from the origin (7mks) $\vec{r}x \vec{v}$ = a constant vector (4mks) b) If $\mathbf{A} = 2\tilde{\imath} - 5\tilde{\jmath} + 3\tilde{k}$, $\mathbf{B} = 3\tilde{\imath} - 4\tilde{\jmath} + 4\tilde{k}$ and $\mathbf{C} = \tilde{\imath} + 3\tilde{\jmath} + 2\tilde{k}$. Find the unit vector parallel to 4A - 2B + C but opposite in sense Question Four (20mks) a) If $\varphi=2xyz^2$, $F=xy\tilde{\imath}-z\tilde{\jmath}+x^2\tilde{k}$ and C is the curve $x=t^2$, y=2t, $z=t^3$ from t=0 to t=1Evaluate the integrals (i) $\int_{\mathcal{L}} \varphi dr$ (4mks) $\int_{\mathcal{L}} F dr$ (4mks) b) If A = $(3x^2+6y)\tilde{\imath} - 14yz\tilde{\jmath} + 20xz^2\tilde{k}$, evaluate $\int c \, a. \, dr$ from (0,0,0) to (1,1) along the following path C $x = t, y = t^2, z = t^3$ (4mks) The straight line joining (0,0,0) then to (1,1,1) (4mks) The strait line joining (0,0,0) and (1,1,1) (iii) (4mks) Question Five (20mks) a) If A = $\tilde{t}t - \tilde{j}t^2 + \tilde{k}t^2$ and B = $\tilde{t}\sin t + \tilde{j}\cos t$. Find the value of $\frac{d}{dt}(A.B)$ (2mks) b) The acceleration of s particle at any time $t \ge 0$ is given by $a = \frac{d^2r}{dt^2} = 12 \cos 2t\tilde{t} - 8 \sin 2t\tilde{j} + 16t\tilde{k}$ if the velocity V and displacement r are zero at t = 0, find V and r at any time Represent the vector $A = z\tilde{\imath} - 2x\tilde{\jmath} + y\tilde{k}$ in cylindrical coordinates. Thus determine $A_{p,\ A_{m{arphi}}}$ and A_{z} (5mks) d) Verify Green's Theorem in the plane for $\oint_{\mathcal{C}} (xy+y^2) \, \mathrm{d}x + x^2 \mathrm{d}y$ where C is the closed curve of the region bounced by y=x and $y=x^2$ $\frac{3}{1} - \frac{19}{6} + \frac{20}{8} = \frac{72 - 56 + 60}{24}$ $\frac{19}{16}$ $\frac{19}{16}$ $\frac{19}{16}$ $\frac{19}{16}$ $\frac{19}{16}$ $\frac{19}{16}$ $\frac{19}{16}$