

UNIVERSITY EXAMINATIONS 2014/2015 ACADEMIC YEAR

2nd YEAR EXAMINATION FOR THE DEGREE OF BSC GENERAL, INDUSTRIAL AND B.ED SC

COURSE CODE/TITLE: SCH 200: ATOMIC STRUCTURE AND BONDING

END OF SEMESTER: I

DURATION: 3 HOURS

DAY/TIME: THURSDAY 8.00 TO 11.00AM DATE: 18.12.2014 (NL4) <u>CONSTANT</u>:

Speed of light =3.0 × 10⁸ m.sec, Planck's constant = 6.62 X 10⁻³⁴ Js; mass of electron = 9.1091 X 10⁻³¹ kg; N_A = 6.022 x 10²³ mol⁻¹; Rydberg constant = 2.18 X 10⁻¹⁸ J; charge of electron (e) = 1.60210 × 10⁻¹⁹ C; permittivity of vacuum (\mathcal{E}_0) = 8.854185 × 10⁻¹² kg M⁻³; nm = 1.0 x10⁻⁹ M, π = 3.14, J = kg m²s⁻², 1pm = 10⁻¹² m

SECTION A (40MKS): ANSWER ALL QUESTIONS

QUESTION ONE (30MKS)

a) State short notes on the terms below and briefly state their significance

i.	Zeeman effect	(2marks)
ii.	Azimuthal quantum number	(2marks)
iii.	Magnetic quantum number	(2marks)

b) Assign all the four quantum numbers for the 15 electrons in phosphorous atom (7marks)

c) State Pauli Exclusion Principle (1mark)

d) A ball weighs 600g. If it's uncertainty in position is 9 pm, determine the uncertainty in velocity of the cricket ball
(5marks)

e) Calculate the wave length of an electron travelling with one-fifth speed of lightf) Differentiate between electronegativity and electron affinity(1mark)

g) Estimate the electronegativity of S according to Pauling given that the bond dissociation energies (kJmol⁻¹) for; S-S, S-F and F-F are 264, 496 and 155 kJ/mol respectively, if the electronegativity of F is 4.1 (3marks)

h) According to de Broglie, permitted λ is given by; $\lambda = 2a/n$. using this equation and other relationships show that $E = h^2 n^2 / 8ma^2$ (7marks)

- i) Cyanate ion (NCO), has three possible Lewis structures.
 - i. Draw these three Lewis structures, and assign formal charges to the atoms in each structure.
 - ii. Which Lewis structure is the preferred one? (5marks)

j) Differentiate between radial node and radial probability

SECTION B 30 MARKS: ANSWER TWO QUESTIONS

QUESTION TWO (15 MARKS)

(a) Write a note on physical significance for each of the terms below, as used in explaining Schrodinger wave equation

i.	Ψ	(1mark)
ii.	Ψ^2	(1mark)

- (b) The wave function (z direction) of a particle in a box is given by; $\Psi_z = B \sin (n\pi z/L)$, where B and L represents a number and length respectively. Using this equation and the Schrodinger equation show that: $E = n^2 h^2 / 8mL^2$ (7marks)
- c) State one similarity between a Lewis base and a ligand (1mark)
- d) Using valence bond theory explain why the complex [Co(NH₃)₆]³⁺ is paramagnetic, calculate the Bohr Magneton (BM) value for the complex and predict its geometry. (5marks)

QUESTION THREEE (15MARKS)

a) Determine the total number of orbitals and their designation for the principal quantum number n = 4 (3marks)

b) An electron in a one – dimensional box requires a wave – length of 8080 nm to excite the electron from the n = 2 to n = 3 energy level. Calculate the length of the box in nm (6marks)

c) The particle N₂²⁺ can be prepared by bombarding the N₂ molecules with fast moving electrons. Using molecular orbital diagram predict;

i. Draw a molecular diagram for the ion, hence write the electronic configuration of the ion

ii. Calculate the bond order of the ion N_2^{2+}

(4marks) (2marks)

(2marks)

QUESTION FOUR (15MARKS)

a) Define Lattice energy (11		
b) Explain using examples the difference between atomic orbital and a shell	(2marks)	
c) Calculate the energy difference in (Jmol ⁻¹) for an electron at an energy state 4 and 6 that		
is confined to a box whose length is 0.6nm	(4marks)	

d) Draw a fully-labelled Born-Haber cycle for the formation of MgO and use the data given below to calculate a value for the enthalpy of lattice formation of this oxide. (8 marks)

Process	$\Delta H^{igodold m}$ /kJ mol ⁻¹
$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$	-602
$Mg(s) \rightarrow Mg(g)$	+148
$Mg(g) \rightarrow Mg^+(g) + e^-$	+738
$Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$	+1451
$O_2(g) \rightarrow 2O(g)$	+498
$O(g) + e^- \rightarrow O^-(g)$	-141
$O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$	+798