

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL ENGINEERING

EEE 0221: ELECTRICAL ENGINEERING PRINCIPLES III

DATE: APRIL 2014

TIME: 1 ¹/₂ HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE - (30 MARKS)

(2)	Define	the term transformer.	(1 Mark)			
` ´						
	b) Explain briefly the working principle of basic transformer. (5 Marks)					
(c)	(c) A 100KV, 6600/400V, 50HZ single phase transformer has 60 runs on the secondary					
	windings. Calculate					
	(i)	Approximate number of primary runs	(2 Marks)			
	(ii)	The maximum value of flux	(3 Marks)			
(d)	Explai	n briefly three energy losses in a transformer.	(3 Marks)			
(e)	(e) A three phase transformer has 500 primary turns and 200 secondary turns. It the supply					
	voltage is 2.5KV, determine the secondary line voltage on no load when the windings are					
	connected.					
	(i)	Delta – star	(3 Marks)			
	(ii)	Star – delta	(3 Marks)			
(f)	E) Define the following terms as applied to illumination					
	(i)	Steradian	(1 Mark)			
	(ii)	Lamp efficiency	(1 Mark)			
(g)	(g) A drawing office containing a number of boards and having a total effective area of $70m^2$					
	is lit by a number of 400W Lamps giving 11lm/W. An illumination of 80 lux is required					
	on the drawing boards. Assuming that 60% of the total light emitted by lamps is					
	available for illumination of the drawing boards, estimate the number of lamps required.					
			(5 Marks)			

(h) State three properti	es of a well designed lighting scheme.	(3 Marks)
--------------------------	--	-----------

QUESTION TWO – (15 MARKS)

- (a) State three factors that determine the utilization coefficient. (3 Marks)
- (b) A 200KVA transformer has a primary winding resistance of 0.3Ω and a secondary winding resistance of 0.0015Ω . The iron loss is 150W and the primary and secondary voltages are 4KV and 500V respectively. If the power factor of the load is 0.85, determine

(i) The pr	rimary current	(1 Mark)				
(ii) The se	(1 Mark)					
(iii)The efficiency of the transformer						
I.	On full load	(5 Marks)				
II.	On half load	(5 Marks)				

QUESTION THREE – (15 MAKS)

(a) Explain five types of lighting schemes. (5 Marks)
(b) A hall is to be provided with a lighting installation. The hall is 30m × 20m × 8m (height). The mounting height is 5m and the required level of illumination is 110 lux. Assume:
Utilization coefficient = 0.6 Maintenance factor = 0.8 Space/height ratio = 1 Lumens / watt for 300W lamp = 12 Lumens / watt for 500 – W lamp = 11.6

Using filament lamps estimate the size and number of single lamp luminaries required.

(4 Marks)

(c) A lamp giving out 5700 lumens is suspended 5m above the horizontal plane

- (i) Directly below the lamp. (3 Marks)
- (ii) 12 m away from the vertical axis. (3 Marks)

QUESTION FOUR – (15 MARKS)

- (a) A 2200/400V single phase transformer takes a no load current of 0.5A and the core loss is 400W. determine
 - (i) The value of working current. (2 Marks)

(ii) The value of magnetizing current.	(2 Marks)			
(iii)Power factor of the transformer.	(2 Marks)			
(iv)Draw the no-load phasor diagram for the transformer.	(2 Marks)			
(b) A single phase transformer has 2000 turns on the primary and 800 runs on the secondary				
windings. Its no-load current is 5A at a power factor of 0.2 lagging. Assume the volt				

drop in the windings is negligible, determine the primary current and power factor when the secondary current is 120A at a power factor of 0.80 lagging. (8 Marks)