MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL ENGINEERING

EEE 0221: ELECTRICAL ENGINEERING PRINCIPLES III

DATE: APRIL 2014
TIME: $1^{1 ⁄ 2} 2$ HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE - (30 MARKS)

(a) Define the term transformer.
(1 Mark)
(b) Explain briefly the working principle of basic transformer.
(5 Marks)
(c) A $100 \mathrm{KV}, 6600 / 400 \mathrm{~V}, 50 \mathrm{HZ}$ single phase transformer has 60 runs on the secondary windings. Calculate
(i) Approximate number of primary runs
(2 Marks)
(ii) The maximum value of flux
(d) Explain briefly three energy losses in a transformer.
(3 Marks)
(e) A three phase transformer has 500 primary turns and 200 secondary turns. It the supply voltage is 2.5 KV , determine the secondary line voltage on no load when the windings are connected.
(i) Delta - star
(3 Marks)
(ii) Star - delta
(3 Marks)
(f) Define the following terms as applied to illumination
(i) Steradian
(1 Mark)
(ii) Lamp efficiency
(1 Mark)
(g) A drawing office containing a number of boards and having a total effective area of $70 \mathrm{~m}^{2}$ is lit by a number of 400 W Lamps giving $11 \mathrm{~lm} / \mathrm{W}$. An illumination of 80 lux is required on the drawing boards. Assuming that 60% of the total light emitted by lamps is available for illumination of the drawing boards, estimate the number of lamps required.
(5 Marks)
(h) State three properties of a well designed lighting scheme.

QUESTION TWO - (15 MARKS)

(a) State three factors that determine the utilization coefficient.
(3 Marks)
(b) A 200 KVA transformer has a primary winding resistance of 0.3Ω and a secondary winding resistance of 0.0015Ω. The iron loss is 150 W and the primary and secondary voltages are 4 KV and 500 V respectively. If the power factor of the load is 0.85 , determine
(i) The primary current
(1 Mark)
(ii) The secondary current
(1 Mark)
(iii)The efficiency of the transformer
I. On full load
II. On half load

QUESTION THREE - (15 MAKS)

(a) Explain five types of lighting schemes.
(5 Marks)
(b) A hall is to be provided with a lighting installation. The hall is $30 \mathrm{~m} \times 20 \mathrm{~m} \times 8 \mathrm{~m}$
(height). The mounting height is 5 m and the required level of illumination is 110 lux.
Assume:
Utilization coefficient $=0.6$
Maintenance factor $=0.8$
Space/height ratio $=1$
Lumens / watt for 300W lamp = 12
Lumens / watt for $500-\mathrm{W}$ lamp $=11.6$

Using filament lamps estimate the size and number of single lamp luminaries required.
(4 Marks)
(c) A lamp giving out 5700 lumens is suspended 5 m above the horizontal plane
(i) Directly below the lamp.
(ii) 12 m away from the vertical axis.

QUESTION FOUR - (15 MARKS)

(a) A $2200 / 400 \mathrm{~V}$ single phase transformer takes a no load current of 0.5 A and the core loss is 400 W . determine
(i) The value of working current.
(ii) The value of magnetizing current.
(iii)Power factor of the transformer.
(iv)Draw the no-load phasor diagram for the transformer.
(2 Marks)
(b) A single phase transformer has 2000 turns on the primary and 800 runs on the secondary windings. Its no-load current is 5A at a power factor of 0.2 lagging. Assume the volt drop in the windings is negligible, determine the primary current and power factor when the secondary current is 120 A at a power factor of 0.80 lagging.
(8 Marks)

