PWANI UNIVERSITY COLLEGE A CONSTITUENT COLLEGE OF KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR

2ND YEAR 1ST SEMESTER EXAMINATION FOR THE DEGREE OF

STREAM: BACHELOR OF EDUCATION (SCIENCE) & BACHELOR OF EDUCATION

SCH 200: ATOMIC STRUCTURE & CHEMICAL BONDING

END SEMESTER: I

TIME: 3 HOURS

DAY: WEDNESDAY 8.00 TO 11,00A.M. DATE: 25/02/2009

INSTRUCTIONS

- 1. All questions have equal marks
- 2. Answer question ONE (COMPULSORY) and any other FOUR questions
- 3. electronic calculators may be used
- 4. Show all your working **CLEARLY**
- 5. Marks are indicated in brackets ()

LIST OF CONSTANTS

Planck's Constant,	h	=	6.626 x 10 ⁻³⁴ j.S
Electronic Mass,	m _e	=	9.1094 x 10 ⁻³¹ Kg
Electronic charge,	е	=	1.6022 x 10 ¹⁹ C
Permittivity constant	Σo	=	8.854 x 10 ⁻¹² CJ ⁻¹ m ⁻¹
Speed of Light	С	=	3.0 x 10 ⁸ mls
Reduced Planck's Consta	nt, ħ	=	1.05457 x 10 ⁻³⁴ J.s

QUESTION ONE - COMPULSORY

a)	Using the sine and cosine function	
-	$\psi = A \sin(Kx) + B\cos(Kx)$	
	Derive the solution of the Schrödinger equation for a particle	e in a box.
	Take K = $(2mE)^{1/2} \hbar^{-1}$	(12 mks)
	a)	a) Using the sine and cosine function $\psi = A \sin (Kx) + B\cos(Kx)$ Derive the solution of the Schrödinger equation for a particle Take $K = (2mE)^{1/2} \hbar^{-1}$

- b) Find the Transition energy of the light emitted when a 1×-27 g particle in 34 one-dimensional box goes from the n = 2 to the n = 1 level (2 mks)
- Q.2) a) Distinguish between an orbital and electronic charge density (2 mks)
 - b) Draw the charge cloud diagram for (2 mks)

1

i) 25 – orbital

- ii) 35 orbital
- c) State three properties of a well behaved wave function. (3 mks)
- d) i) Calculate the De Broglie wavelength associated with the electron in the hydrogen atom. (3 mks)
 - ii) According to Schrödinger, what does each of the following quantum numbers describe Principal quantum number, Angular momention quantism number and magnetic quantum number (4 mks)
- Q.3) a) Diatomic Molecule for Neon, Ne₂ does not exist. Explain using the Molecular orbital theory. (3 mks)
 - b) i) Draw the molecular orbital energy level diagram for the ground state of the oxygen molecule 0_2 and write the electronic configuration. (5 mks)
 - ii) State and explain the number of sigma , δ and Pi, π bonds in a 0₂ molecule (3 mks)
 - iii) is the Oxygen-Oxygen bond a single, double or Triple bond? (1 mk)
 - iv) What is the bond order of the oxygen-oxygen bond? (2 mks)
- Q.4) a) i) Use the abbreviated electron configurations to show the formation of the ionic compound. Magnesium Fluoride form magnesium atoms and Fluorine atoms. (2 mks)
 - ii) What is the formula for magnesium Fluoride? (1 mk)
 - b) Define the term Lattice Energy (2 mks)
 - c) i) Given the information below, use a Born-Haber cycle to calculate the Energy change associated with the reaction. (5 mks)
 - $K^{+}_{(g)} + Br_{(g)} \longrightarrow KBr_{(s)}$.
 - 1) $K_{(s)} \longrightarrow K_{(g)} \Delta H^{o}_{1} = 77 \text{Kj}$
 - 2) $Br_{2(1)} \longrightarrow Br_{2(g)} \Delta H^{o}_{2} = 30 \text{ Kj}$
 - 3) $Br_{2(g)} \longrightarrow 2Br_{(g)} \Delta H^{o}_{3} = 194Kj$
 - 4) $K_{(g)} \longrightarrow K^{+}_{(g)} + e^{-} \Delta H^{0}_{4} = 419 \text{Kj}$
 - 5) $Br_{(g)} + e^{-} \longrightarrow Br_{(g)}^{-} \Delta H_{5}^{o} = 324 \text{ Kj}$
 - 6) $2 K_{(s)} + Br_{2(1)} \longrightarrow 2KBr_{(s)} \Delta H^{o}_{6} = 788 \text{ Kj}$

ii`) Determine the Lattice energy for solid KBr	(2 mks)
щ	Determine the Lattice energy for solid KDL.	(Z 111KS)

iii) Explain the source of energy that separates the oppositely charged ions in a Crystal of an Ionic Solid from each other when dissolving. (2 mks)

(3 mks)

- Q.5) a) Calculate the third (rd) ionization potential for Lithiom (Li = 3)
 - b) Given that the allowed bound stake Energy levels of Hydrogen-Like atoms is given by:

$$\mathsf{E} = \frac{-Z^2 \mathsf{M} \mathsf{e}^4}{32 \, \pi^2 \, \Sigma^2 \, \hbar^2} \cdot \frac{1}{\Pi \, 2}$$

Calculate the total energy of two electrons in the n = 2 level of Hydrogen atom (5 mks)

- c) i) The S-orbital does not have the Angular momentum, in other words, the S-orbital does not depend on the angular co-ordinates. Explain (2 mks)
 - ii) A sodium atom, Na is larger than a sodium ion, Na⁺ while a chloride ion, Cl⁻ is larger than a chlorine atom, Cl. Explain
 - iii) An aqueous solution of AlCl₃ is acidic . Explain (2 mks) (2 mks)

Q.6) a) i) Give the Lewis definition for Acids and bases (1 mk)

- ii) Distinguish between a complex ion and a Ligard (2 mks)
- b) Picture the formation of HCO_3^- as a Lewis acid-base reaction between OH^- and CO_2 (2 mks)
- c) Briefly describe any TWO properties of lonic compounds and explain how ionic bonding accounts for these properties. (2 mks)
- d) Use the bond energies indicated to estimate (Kr) $\Delta H_{s \times n} \text{ at } 25^{\circ}\text{C}$ for the reaction: $CO_{(g)} + OH_{(g)} \longrightarrow CO_{2(g)} + H_{(g)}$ Bond Energies, 1075 464 799
 - Kj/Nol

- i) The electrical conductivity of metals decreases with increased temperature. (2 mks)
- ii) Metals have a characteristic shinny appearance (2 mks)