PWANI UNIVERSITY COLLEGE A CONSTITUENT COLLEGE OF KENYATTA UNIVERSITY
 UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR
 $2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION FOR THE DEGREE OF

 STREAM: BACHELOR OF EDUCATION (SCIENCE) \& BACHELOR OF

 STREAM: BACHELOR OF EDUCATION (SCIENCE) \& BACHELOR OF EDUCATION

 EDUCATION}

SCH 200: ATOMIC STRUCTURE \& CHEMICAL BONDING

END SEMESTER: I
DAY: WEDNESDAY 8.00 TO 11,00A.M.

TIME: 3 HOURS
DATE: 25/02/2009

INSTRUCTIONS

1. All questions have equal marks
2. Answer question ONE (COMPULSORY) and any other FOUR questions
3. electronic calculators may be used
4. Show all your working CLEARLY
5. Marks are indicated in brackets ()

LIST OF CONSTANTS

Planck's Constant,	h	$=6.626 \times 10^{-34} \mathrm{j} \mathrm{S}$	
Electronic Mass,	m_{e}	$=$	$9.1094 \times 10^{-31} \mathrm{Kg}$
Electronic charge,	e	$=1.6022 \times 10^{19} \mathrm{C}$	
Permittivity constant	\sum_{0}	$=8.854 \times 10^{-12} \mathrm{CJ}^{-1} \mathrm{~m}^{-1}$	
Speed of Light	C	$=$	$3.0 \times 10^{8} \mathrm{mls}^{2}$
Reduced Planck's Constant,\hbar	$=$	$1.05457 \times 10^{-34} \mathrm{~J} . \mathrm{s}$	

QUESTION ONE - COMPULSORY

Q.1) a) Using the sine and cosine function

$$
\begin{equation*}
\Psi=A \sin (K x)+B \cos (K x) \tag{12mks}
\end{equation*}
$$

Derive the solution of the Schrödinger equation for a particle in a box.
Take $K=(2 m E)^{1 / 2} \hbar^{-1}$
b) Find the Transition energy of the light emitted when a $1 \mathrm{x}-27 \mathrm{~g}$ particle in 34 one-dimensional box goes from the $\mathrm{n}=2$ to the $\mathrm{n}=1$ level (2 mks)
Q.2) a) Distinguish between an orbital and electronic charge density (2 mks)
b) Draw the charge cloud diagram for
(2 mks)
i) 25 - orbital
ii) 35 - orbital
c) State three properties of a well behaved wave function.
d) i) Calculate the De Broglie wavelength associated with the electron in the hydrogen atom.
ii) According to Schrödinger, what does each of the following quantum numbers describe Principal quantum number, Angular momention quantism number and magnetic quantum number (4 mks)
Q.3) a) Diatomic Molecule for Neon, Ne_{2} does not exist. Explain using the Molecular orbital theory.
b) i) Draw the molecular orbital energy level diagram for the ground state of the oxygen molecule O_{2} and write the electronic configuration.
ii) State and explain the number of sigma, δ and Pi, π bonds in a O_{2} molecule
iii) is the Oxygen-Oxygen bond a single, double or Triple bond?
(1 mk)
iv) What is the bond order of the oxygen-oxygen bond? (2 mks)
Q.4) a) i) Use the abbreviated electron configurations to show the formation of the ionic compound. Magnesium Fluoride form magnesium atoms and Fluorine atoms.
ii) What is the formula for magnesium Fluoride?
b) Define the term Lattice Energy
c) i) Given the information below, use a Born-Haber cycle to calculate the Energy change associated with the reaction.

$$
\mathrm{K}_{(\mathrm{g})}^{+}+\mathrm{Br}^{-}(\mathrm{g}) \longrightarrow \mathrm{KBr}_{(\mathrm{s})} .
$$

1)

$$
\mathrm{K}_{(\mathrm{s})} \longrightarrow \mathrm{K}_{(\mathrm{g})}
$$

$$
\Delta \mathrm{H}_{1}^{0}=77 \mathrm{Kj}
$$

2)
3)

$\mathrm{Br}_{2(1)} \longrightarrow \mathrm{Br}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}^{\circ}{ }_{2}=30 \mathrm{Kj}$

$$
\mathrm{Br}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{Br}_{(\mathrm{g})}
$$

$$
\Delta \mathrm{H}_{3}^{\circ}=194 \mathrm{Kj}
$$

4)

$$
\mathrm{K}_{(\mathrm{g})} \longrightarrow \mathrm{K}^{+}{ }_{\mathrm{g})}+\mathrm{e}^{-}
$$

$$
\Delta \mathrm{H}_{4}^{\circ}=419 \mathrm{Kj}
$$

5)

$$
\mathrm{Br}_{(\mathrm{g})+} \mathrm{e}^{-} \longrightarrow \mathrm{Br}^{-}{ }_{(\mathrm{g})} \quad \Delta \mathrm{H}_{5}^{\circ}=324 \mathrm{Kj}
$$

6)

$$
2 \mathrm{~K}_{(\mathrm{s})}+\mathrm{Br}_{2(1)} \longrightarrow 2 \mathrm{KBr}_{(\mathrm{s})} \quad \Delta \mathrm{H}_{6}^{\circ}=788 \mathrm{Kj}
$$

ii) Determine the Lattice energy for solid KBr.
iii) Explain the source of energy that separates the oppositely charged ions in a Crystal of an lonic Solid from each other when dissolving. (2 mks)
Q.5) a) Calculate the third (rd) ionization potential for Lithiom ($\mathrm{Li}=3$) (3 mks)
b) Given that the allowed bound stake Energy levels of Hydrogen-Like atoms is given by:

$$
\mathrm{E}=\frac{-\mathrm{Z}^{2} \mathrm{Me}^{4}}{32 \pi^{2} \Sigma^{2} \hbar^{2}} \cdot 1
$$

Calculate the total energy of two electrons in the $\mathrm{n}=2$ level of Hydrogen atom
c) i) The S-orbital does not have the Angular momentum, in other words, the S-orbital does not depend on the angular co-ordinates. Explain
ii) A sodium atom, Na is larger than a sodium ion, Na^{+}while a chloride ion, Cl^{-}is larger than a chlorine atom, Cl . Explain
iii) An aqueous solution of AlCl_{3} is acidic. Explain (2 mks)
Q.6) a) i) Give the Lewis definition for Acids and bases (1 mk)
ii) Distinguish between a complex ion and a Ligard
b) Picture the formation of $\mathrm{HCO}_{3}{ }^{-}$as a Lewis acid-base reaction between OH^{-}and CO_{2}
c) Briefly describe any TWO properties of lonic compounds and explain how ionic bonding accounts for these properties.
(2 mks)
d) Use the bond energies indicated to estimate (Kr) reaction:

Kj/Nol
e) Explain the following observations
i) The electrical conductivity of metals decreases with increased temperature.
ii) Metals have a characteristic shinny appearance

