THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Business \& Social Studies
DEPARTMENT OF BUSINESS STUDIES
BACHELOR OF BUSINESS ADMINISTRATION
HBC 2111: MANAGEMENT MATHEMATICS II
END OF SEMESTER EXAMS
SERIES: APRIL/MAY 2010.
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

1. The paper consists of TWO sections \mathbf{A} and \mathbf{B}.
2. Answer ALL questions from Section A and any TWO questions from Section B.

Question ONE is compulsory.

SECTION A

(Answer ALL questions.)

QUESTION ONE

(a) Find $\frac{d y}{d x}$ for the following functions in parametric form:-
(i) $x=t^{3}, \quad y=t^{2}$
(ii) $\frac{3 a t}{1+t^{3}}, \quad y=\frac{3 a t^{2}}{1+t^{3}}$
(b) The revenue function of a product is given by the relation:
$y=4,000,000-(x-2000)^{2}$, where y is the total revenue and x is the number of units sold.
(i) Find the number of units that maximizes the total revenue.
(ii) What is the amount of maximum revenue?
(c) Find the area bounded by the curve $y=x 2-4$ and the lines $y=0$ and $y=5$.
(d) A firm selling a Trade Directory has developed a profit function as follows:-

$$
P=18 D-0.001 D^{2}+0.12 D A-160 A^{2}-10,000
$$

Where $D=$ number of directories sold and
$A=$ number of advertising pages.
How many directories containing how many advertising pages should be sold to maximize profit.
(e) A firm produces two products, \mathbf{X} and \mathbf{Y} with a contribution of sh. 8 and sh. 10 per unit respectively.

Production data are (Per unit)

	Labour hours	Material A	Material B
\mathbf{X}	3	4	6
\mathbf{Y}	5	2	8
Total Available	500	350	800

(i) Formulate the LP Model in The Standardized manner.
(ii) Solve the mode in (i) using the graphic method.
(iii) Calculate the shadow prices of the binding constraints and interpret.

SECTION B
 (Answer any TWO questions)

QUESTION TWO

(a) In an economy of three industries R, S, T, the input-output data is as given below in millions).

	Users			Final	Output
Producers	\mathbf{R}	\mathbf{S}	\mathbf{T}	Demand	Output
R	80	100	100	40	320
S	80	200	60	60	400
T	80	100	100	20	300

Determine the total output of each industry if the final demand changes to 60 for $\mathrm{R}, 40$ for S and 60 for T .
(10 marks)
(b) A company manufactures two types of novelty souvenirs, made of plywood.

Souvenirs of Type A requires 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of Type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 h ours available for assembling. The profit is 50 cents each for type A and sh. 60 cents each for type b souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit?
(10 marks)
(1 sh.=100cts) (answer in shillings)

QUESTION THREE

(a) A man wishes to make a new fertilizer which is to be a mixture of 2 ingredients A and B . The properties of the 2 ingredients A and B . The properties of the 2 ingredients are:-

Ingredients	Bonemeal	Nitrogen	Lime	Phosphate	Cost/Kg.
\mathbf{A}	20%	30%	40%	10%	12
B	40%	10%	45%	5%	8

It has been decided that:
(a) The fertilizers be sold in bags containing a minimum of 100 Kg .
(b) It must contain at least 15% of nitrogen.
(c) It must contain at least 8\% of phosphates
(d) It must contain at least 25% of bonemeal.

The manufacturer wishes to meet the above requirements at the minimum cost possible.

Required:

(i) Formulate the LP problem.
(ii) Using a graphical approach determine the optimum production plan.
(b) Solve the following simultaneous equation.

$$
\begin{align*}
& 2 x-y+3 z=-2 \\
& -x+3 y-2 z=9 \tag{10marks}\\
& 4 x-2 y+z=1
\end{align*}
$$

QUESTION FOUR

A fan manufacturing company can sell all the fans of a particular type that he can produce. The total cost (£) of producing q fans per week is given by $600 q-4000$. The demand function (£) is estimated as $1000-4 q$.
(a) Derive the revenue function, R.
(b) Obtain the total profit function.
(c) How many units per week should be produced inorder to maximize profit?
(d) Show that the solution of the equation $\frac{d R}{d q}=\frac{d C}{d q}$ where C represents the cost function, given the same value for q as in part (c).
(e) What is the maximum profit available?

QUESTION FIVE

(a) XYZ Company Ltd. supplies toolkits for the home handyman. Each toolkit comprises a standard plastic box which contains a variable number of tools depending on the type of tools, the market, and the wholesalers requirements. The firm has derived a profit function which shows that their profits are dependent both on the number of tool kits supplied and the number of tools in each kit. The profit function is as follows:-

$$
\begin{array}{rll}
P=16 k-0.0002 K^{2}+0.1 K T-155 T^{2}-20,000 \\
\text { where } & = & \text { Profits in £'s } \\
\mathrm{k} & = & \text { No. of kits } \\
\mathrm{T} & = & \text { No. of tools in each kit. }
\end{array}
$$

How many tool kits containing how many tools should be sold?
(b) Find the area bounded by the curve

$$
y^{2}=2 y-x \quad \text { and the } y \text {-axis }
$$

