

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATION 2015/2016

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (STATISTICS)

STA 401: MEASURE, PROBABILITY AND INTEGRATION

 DATE: 16TH APRIL 2015
 TIME: 2 HOURS

Instructions: Answer question one and any other two questions.

QUESTION ONE. (30 MARKS)

- a) i) Define a measure space. (2 marks)
 - ii) When is a measure space called complete? (3 marks)
- b) State three necessary and sufficient conditions for a function f to be measurable. (3 marks)
- c) If $\{g_n\}$ is a sequence of measurable functions, prove that the functions $\lim_n \sup g_n$ and $\lim_n \inf g_n$ are measurable. (3 marks)
- d) Let $f: \mathcal{X} \to \mathbb{R}$ be measurable and suppose that $f \ge 0$. When is the function f not integrable? (4 marks)
- e) Prove that the distribution function \mathcal{F}_f has the following properties:
 - i) $0 \le \mathcal{F}_f(x) \le 1$ for all $x \in \mathbb{R}$ (1 mark)

- ii) $\mathcal{F}_f(x) \leq \mathcal{F}_f(y)$ where $x \leq y$ (3 marks)
- iii) $\lim_{n\to\infty} \mathcal{F}_f(x) = 0$ and $\lim_{n\to\infty} \mathcal{F}_f(x) = 1$ (5 marks)
- iv) \mathcal{F}_f is continuous from the right, that is, for each $x \in \mathbb{R}$, we have $\mathcal{F}_f(x) = \lim_{h \downarrow 0} \mathcal{F}_f(x+h)$ (5 marks)
- f) What is a bounded sequence? (1 mark)

QUESTION TWO (20 MARKS)

- a) If μ is a finite measure on Σ , prove that the following hold.
 - i) $\mu(\phi) = 0$ (3 marks)
 - ii) If $A_1, ..., A_n \in \Sigma$ with $A_i \cap A_j = \phi$ for $i \neq j$, then $\mu (A_1 + A_2 + ... + A_n) = \mu (A_1) + \mu (A_2) + ... + \mu (A_n) (2 \text{ marks})$
 - iii) If A, B $\epsilon \Sigma$ with A \subseteq B, then μ (A) $\leq \mu$ (B) (2 marks)
 - iv) If $A1 \subseteq A2 \subseteq ...$ with $An \in \Sigma$, for n = 1, 2, ..., then we have $\mu(A_n) \uparrow \mu(\bigcup_m A_m) \text{ as } n \to \infty$ (5 marks)
 - v) If $A_1 \supseteq A_2 \supseteq \dots$ with An $\epsilon \Sigma$ for $n = 1, 2, \dots$, then we have $\mu(A_n) \downarrow (\bigcap_m A_m) \text{ as } n \to \infty$ (4 marks)
 - vi) Prove that Σ^1 is a σ algebra. (4 marks)

QUESTION THREE (20 MARKS)

- a) If g_1 and g_2 are measurable functions on a common domain, then prove that, each of the following sets is measurable. (10 marks)
 - i) $\{\omega: g_1(\omega) < g_2(\omega)\}$

ii) {
$$\omega : g_1(\omega) = g_2(\omega)$$
}

- iii) { ω : $g_1(\omega) > g_2(\omega)$ }
- b) If $\{g_n\}$ is a sequence of measurable functions, prove that $\sup g_n$ and $\inf g_n$ are measurable. (10 marks) n n

QUESTION FOUR (20 MARKS)

Suppose that f, g are measurable and let E $\epsilon \Sigma$. Then prove the following:

- i) If $0 \le f \le g$, then $\int_E f d\mu \le \int_E g d\mu$ (3 marks)
- ii) If $A \subseteq B$, for A, B $\epsilon \Sigma$ and $f \ge 0$ then $\int_A f d\mu \le \int_B f d\mu$ (2 marks)
- iii) If $f \ge 0$ and $c \ge 0$ is a constant, then $\int_E cf d\mu = c \int_E f d\mu$. (3 marks)
- iv) If f = 0 for all $x \in E$, then $\int_E f d\mu = 0$ (3 marks)
- v) If $\mu(E) = 0$, then $\int_E f d\mu = 0$ for any $f \ge 0$. (2 marks)

vi) If
$$f \ge 0$$
, then $\int_E f d\mu = \int_X 1_E d\mu$ (7 marks)

QUESTION FIVE (20 MARKS)

- a) For any $a \in \mathbb{R}$, prove that, the jump of \mathcal{F}_f at *a* is equal to $\mathbb{P}(f = a)$.
- b) Prove that, the non-zero jumps of the distribution function \mathcal{F}_f form a countable set. (5 marks)

(7 marks)

c) Prove that, for any random variable *f*, there is a countable set $J \in \mathbb{R}$ such that $\mathbb{P}(f = x) = 0$ for all $x \in \mathbb{R}/J$. (2 marks)

d) Construct a non-decreasing function
$$\mathcal{F}(x)$$
 on \mathbb{R} , obeying
 $0 \le \mathcal{F}(x) \le 1$, by means of a certain limiting procedure.
Take $\mathcal{F}(x) = \begin{cases} 0, & x \le 0\\ x, & 0 \le x \le 1\\ 1, & x \ge 1 \end{cases}$
Construct $\mathcal{F}_1(x), \mathcal{F}_2(x), \mathcal{F}_3(x)$.
Explain the shapes. (6 marks)