SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATION 2015/2016

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (STATISTICS)

STA 401: MEASURE, PROBABILITY AND INTEGRATION

DATE: 16 $^{\text {TH }}$ APRIL 2015
TIME: 2 HOURS

Instructions: Answer question one and any other two questions.

QUESTION ONE. (30 MARKS)
a) i) Define a measure space.
(2 marks)
ii) When is a measure space called complete?
(3 marks)
b) State three necessary and sufficient conditions for a function f to be measurable.
(3 marks)
c) If $\left\{g_{n}\right\}$ is a sequence of measurable functions, prove that the functions $\lim _{n} \sup g_{n}$ and $\lim _{n} \inf g_{n} \quad$ are measurable.
(3 marks)
d) Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be measurable and suppose that $f \geq 0$. When is the function f not integrable?
(4 marks)
e) Prove that the distribution function \mathcal{F}_{f} has the following properties:
i) $\quad 0 \leq \mathcal{F}_{f}(x) \leq 1$ for all $x \in \mathbb{R}$
(1 mark)
ii) $\quad \mathcal{F}_{f}(x) \leq \mathcal{F}_{f}(y) \quad$ where $x \leq y$
iii) $\quad \lim _{n \rightarrow \infty} \mathcal{F}_{f}(x)=0$ and $\lim _{n \rightarrow \infty} \mathcal{F}_{f}(x)=1$ marks)
iv) \mathcal{F}_{f} is continuous from the right, that is, for each $x \in \mathbb{R}$, we have $\mathcal{F}_{f}(x)=\lim _{h \downarrow 0} \mathcal{F}_{f}(x+h)$ (5 marks)
f) What is a bounded sequence?

QUESTION TWO (20 MARKS)

a) If μ is a finite measure on Σ, prove that the following hold.
i) $\quad \mu(\phi)=0$
ii) If $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \in \Sigma$ with $\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\phi$ for $\mathrm{i} \neq \mathrm{j}$, then $\mu\left(\mathrm{A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{n}}\right)=\mu\left(\mathrm{A}_{1}\right)+\mu\left(\mathrm{A}_{2}\right)+\ldots+\mu\left(\mathrm{A}_{\mathrm{n}}\right)(2$ marks $)$
iii) If $\mathrm{A}, \mathrm{B} \in \Sigma$ with $\mathrm{A} \subseteq \mathrm{B}$, then $\mu(\mathrm{A}) \leq \mu$ (B) marks)
iv) If $\mathrm{A} 1 \subseteq \mathrm{~A} 2 \subseteq \ldots$ with $\mathrm{An} \in \Sigma$, for $\mathrm{n}=1,2, \ldots$, then we have $\mu\left(\mathrm{A}_{\mathrm{n}}\right) \uparrow \mu\left(\mathrm{U}_{m} A_{m}\right)$ as $\mathrm{n} \rightarrow \infty$ marks)
v) If $\mathrm{A}_{1} \supseteq \mathrm{~A}_{2} \supseteq \ldots$ with $\mathrm{An} \in \sum$ for $\mathrm{n}=1,2, \ldots$, then we have $\mu\left(\mathrm{A}_{\mathrm{n}}\right) \downarrow\left(\bigcap_{m} A_{m}\right)$ as $\mathrm{n} \rightarrow \infty$
vi) Prove that Σ^{1} is a $\sigma-$ algebra. marks)

QUESTION THREE (20 MARKS)

a) If g_{1} and g_{2} are measurable functions on a common domain, then prove that, each of the following sets is measurable.
i) $\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\}$
ii) $\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\}$
iii) $\left\{\omega: g_{1}(\omega)>g_{2}(\omega)\right\}$
b) If $\left\{g_{n}\right\}$ is a sequence of measurable functions, prove that $\sup g_{n} \quad$ and $\quad \inf g_{n} \quad$ are measurable. (10 marks) n n

QUESTION FOUR (20 MARKS)

Suppose that f, g are measurable and let $\mathrm{E} \epsilon \Sigma$. Then prove the following:
i) If $0 \leq f \leq g$, then $\int_{E} f d \mu \leq \int_{E} g d \mu$ (3 marks)
ii) If $\mathrm{A} \subseteq \mathrm{B}$, for $\mathrm{A}, \mathrm{B} \in \Sigma$ and $f \geq 0$ then $\int_{A} f d \mu \leq \int_{B} f d \mu$ marks)
iii) If $f \geq 0$ and $\mathrm{c} \geq 0$ is a constant, then $\int_{E} c f d \mu=c \int_{E} f d \mu$. (3 marks)
iv) If $f=0$ for all $x \in \mathrm{E}$, then $\int_{E} f d \mu=0$
v) If $\mu(\mathrm{E})=0$, then $\int_{E} f d \mu=0$ for any $f \geq 0$.
vi) If $f \geq 0$, then $\int_{E} f d \mu=\int_{X} 1_{E} d \mu$
(7 marks)

QUESTION FIVE (20 MARKS)

a) For any $a \in \mathbb{R}$, prove that, the jump of \mathcal{F}_{f} at a is equal to $\mathbb{P}(f=a)$.
(7 marks)
b) Prove that, the non-zero jumps of the distribution function \mathcal{F}_{f} form a countable set.
c) Prove that, for any random variable f, there is a countable set $J \in \mathbb{R}$ such that $\mathbb{P}(f=x)=0$ for all $x \in \mathbb{R} / J$.
d) Construct a non-decreasing function $\mathcal{F}(x)$ on \mathbb{R}, obeying $0 \leq \mathcal{F}(x) \leq 1$, by means of a certain limiting procedure.
Take $\mathcal{F}(x)=\left\{\begin{array}{lr}0, & x \leq 0 \\ x, & 0 \leq x \leq 1 \\ 1, & x \geq 1\end{array}\right.$
Construct $\mathcal{F}_{1}(x), \mathcal{F}_{2}(x), \mathcal{F}_{3}(x)$.
Explain the shapes.
(6 marks)

