

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR DEGREES OF BACHELOR OF SCIENCE IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

BCH 402: BIOCHEMICAL TECHNIQUES AND INSTRUMENTATION III

DATE: 11TH APRIL, 2017 TIME:1.30-3.30 P.M

INSTRUCTIONS TO CANDIDATES

(a) Answer <u>ALL</u> the Questions in Section A

(b) Answer <u>ANY TWO</u> Questions in Section B

(c) Illustrate your answers with well labeled diagrams where appropriate

SECTION A (30 MARKS)

1.	Define organelle permeabilisation technique outlying its benefits.	(3 marks)
2.	Explain three ways in which sedimentation velocity experiments can also be used to study reversible chemical equilibria between macromolecular species.(3 marks)	
3.	a) State the rationale of protein characterisation processes.b) Outlinethreeparametersapplicable to proteins for general	(1 mark)
	characterization.	(3 marks)
4.	Ca ⁴⁵ has a half-life of 163 days. Calculate	
	a) the decay constant (λ) in terms of (i) day ⁻¹ and (ii) sec ⁻¹	(2 marks)
	b) the residual percentage of the initial radioactivity remaining in a sample after	

	90 days.	(2 marks)
5.	a) Explain thebasis of immunoassays.	(1 mark)
	b) Outline two labelling techniques used in immunoassays	(2 marks)
6.	Outline two methods of <i>in vitro</i> labelling of DNA and RNA pro-	bes. (4 marks)
7.	List four applications of filter hybridisation techniques.	(4 marks)

- 8. Brieflyexplain the **two** main principle applications of microarray techniques.(**2 marks**)
- 9. Describe how a 50 μl restriction digest can be prepared for 50 DNA samples of average concentration 250ng/μl using *Mse*I 50 U/μl. 1 unit of *Mse*I is required to digest 50 ng 500 ng of total Genomic DNA. BSA is supplied as 100X concentration (10mg/ml) and is required in *Mse*I restriction. (3 marks)

SECTION B (40 MARKS)

10.	Describe the continuous centrifugation gradient techniques.	(20 marks)
11.	Describe how the N terminal amino acid analysis is undertaken.	(20 marks)
12.	Discuss immunassay techniques.	(20 marks)
13.	Discuss the experimental factors to be considered in order obtain intact	
	Chromosomal DNA.	(20 marks)