

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

BCH 201: BIOCHEMICAL TECHNIQUES AND INSTRUMENTATION I

DATE: 20TH APRIL, 2017 TIME: 8.00-10.00 A.M

INSTRUCTIONS TO CANDIDATES

- (a) Answer <u>ALL</u> the Questions in Section A
- (b) Answer ANY TWO Questions in Section B

(c) Illustrate your answers with well labeled diagrams where appropriate

SECTION A (30 MARKS)

- 1. The amino acid glycine, which has a pK_a of 9.6, is often used as the main ingredient of a buffer in biochemical experiments.
 - a. Give the reversible equilibrium equation of the glycine buffer. (0.5 marks)
 b. In what pH range can glycine be used as an effective buffer? (0.5 marks)
 c. In a 0.1 M solution of glycine at pH 9.0, what fraction of glycine has its amino group in the -NH₃⁺ form? (1 mark)
 - d. How much 5 M KOH must be added to 1.0 L of 0.1 M glycine at pH 9.0 to bring its pH to exactly 10.0? (1 mark)
 - e. When 99% of the glycine is in its $-NH_3^+$ form, calculate the numerical relation between the pH of the solution and the p K_a of the amino group. (**1 mark**)

2.	Outline the various applications of thin layer chromatography.	(3 marks)
3.	Give the advantages and limitations of using cellulose acetate membrane	
	(CAM) in electrophoresis.	(3 marks)
4.	Explain the benefit double beam photometric devices have over single beam ones. (2 marks)	
5.	Outline three methods of determining protein concentration.	(3 marks)
6.	The molecular mass of the lactate dehydrogenase (LDH) enzyme is 140 kDa. Its molar	
	extinction coefficient is $\varepsilon_{280} = 1.6 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$. The optical absorption of a given LDH	
	solution at 280 nm is $E_{280} = 0.8$. Calculate the following:	
	a. The molar concentration (μM) of the solution.	(1 mark)
	b. The percentage concentration (w/v) of (a) above.	(1 mark)
	c. The percentage concentration (mg/mL) of (b) above.	(1 mark)
7.	Give three examples of enzymatic reactions that can be assayed	
	spectrophotometrically.	(3 marks)
8.	Briefly outline a routine protocol for precipitating DNA.	(3 marks)
9.	Givetwo proteases used in determination of amino acid composition of	
	proteins and state their specificity.	(3 marks)
10). Briefly explain how 2D electrophoresis employs the physiochemical proper	rties
	of proteins.	(3 marks)
<u>SE</u>	CTION B (40 MARKS)	
11	. Describe the titration curve of phosphoric acid.	(20 marks)
12	2. Discuss the continuous and discontiuous classification of gel electrophoretic	c
	methods.	(20 marks)
13	3. a. Describe the significant variables for deoxyribonucleic acid precipitatio	n. (10 marks)
	b. Describe methanol/chloroform method of protein precipitation.	(10 marks)

14. Describe the phases of ion exchange chromatography.

(20 marks)