

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION SCIENCE AND BACHELOR OF EDUCATION ARTS

SMA 320: METHODS 1

DATE: APRIL 6, 2017

TIME: 11:00 AM-1:00 PM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a) Let $\Gamma(x)$ denote the Gamma function. Prove that

$$\Gamma(x+1) = x\Gamma(x)$$
 for $x > 0$

(5 marks)

b) Determine a power series solution for the initial value problem

$$y' - 2y = 0$$
, $y(0) = 3$

(5 marks)

c) If $J_n(x)$ is Bessel's function of first kind of order n, prove that

$$J_{-1}(x) = (-1)J_{11}(x)$$

for
$$n = 1, 2, 3, \dots$$

(5 marks)

d) Given the relation $f(t) * g(t) = L^{-1}(L(f(t) \cdot L(g(t))))$

Where f(t) and g(t) are piecewise continuous functions for $t \ge 0$, and that,

|f(t)| and |g(t)| are bounded, calculate the inverse Laplace transform of:

$$F(s) = \frac{1}{s(s^2 + 1)} \tag{5 marks}$$

e) Find the Fourier sine series for f(x) = x on $-L \le x \le L$

(5 marks)

f) If B(x, y) denotes Beta function in two variables x and y, prove that

$$B(x, y+1) = \frac{y}{x+y} B(x, y)$$
 (5 marks)

QUESTION TWO (20 MARKS)

a) Prove the given formula well known as Bonnet's recurrence formula for Legendre polynomial.

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
(8 marks)

- b) Calculate the convolution of $t^2 * \cos t$ (6 marks)
- c) If $J_n(x)$ is Bessel's function of order n, prove that

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x \tag{6 marks}$$

QUESTION THREE (20 MARKS)

- a) If $\Gamma(x)$ and B(x, y) denotes Gamma and Beta functions respectively,
 - i. show that the two functions have the following relation

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 (10 marks)

ii. Show that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
 (5 marks)

b) Solve the partial differential equation using the method of separation of variables

$$\frac{\partial^2 z}{\partial x \partial y} = x^2 y \tag{5 marks}$$

QUESTION FOUR (20 MARKS)

- a) Find the Fourier cosine series for $f(x) = x^2$ on $-L \le x \le L$ (8 marks)
- b) Solve the following initial value problem using Laplace transform.

$$y'' - 2y = -4$$
, $y(0) = 0$, $y'(0) = 0$ (6 marks)

c) Determine a power series solution (up to 3rd terms) for the differential equation

$$y'' + xy = 0 ag{6 marks}$$

QUESTION FIVE (20 MARKS)

a) Solve the following initial value problem using Laplace transform.

$$x'' - 6x' + 34x = -34$$
, $x(0) = 2$, $x'(0) = 3$ (10 marks)

b) Show that any two different Legendre polynomials are orthogonal in the interval -1 < x < 1

(10 marks)

--END--

