

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREES OF

BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF

EDUCATION (SCIENCE)

SCH 206: ORGANIC ACIDS, AMINES, ESTERS AND PHENOLS
DATE: 18TH APRIL, 2017 TIME: 8.00-10.00 A.M
INSTRUCTIONS TO CANDIDATES

- (a) Answer guestion One and any other Two guestions
- (b) Question 1 <u>carries 30 marks</u> while the other questions <u>carry 20 marks</u> each
- (c) Illustrate your answers with well labeled diagrams where appropriate
- (d) No written materials allowed.
- (e) Write all answers in the booklet provided.
- (f) Do not forget to write your Registration Number.
- (g) Do not write any answers on this question paper

QUESTION 1 (30 MARKS)

- a) Write the structural formula for each of the following compounds:
 - i. *m*-iodophenol
 - ii. isobutyl methyl ketone
 - iii. 2-butenal
 - iv. 1,3-diphenyl-2-propen-1-one
 - v. magnesium 2-chloropropanoate

- vi. trimethylacetic acid
- vii. 2-methyl-4-ethyloctanoic acid
- viii. isopropyl acetate
- ix. diphenylamine
- x. N,N-dimethylacetamide
- xi. acetophenone

(10 marks)

b) Neglecting enantiomerism, give structural formulas and IUPAC names for the seven carbonyl compounds of formula $C_5H_{10}O$.

(7 marks)

- c) Give the names of each of the following compounds
 - (i) CH₃CH₂CHOHCH₂CHO
 - (ii) $CH_3CHC(CH_3)COCH_3$
 - (iii) $C_6H_5CH_2CO_2H$
 - (iv) $(CH_3CO)_2O$
 - (v) C_6H_5COCl
 - (vi) CH₃CH₂CO₂CH₂CH₃
 - (vii) HCCCH₂CO₂H
 - (viii) CH₃CH₂CONH₂

(xii) CH₃COCH₂CH₂CHO

(12 marks)

QUESTION 2 (20 MARKS)

- a) Write balanced equations, for the reaction of phenylacetaldehyde with:
 - i. Tollens' reagent
 - ii. CrO_3/H^+
 - iii. Cold dilute $KMnO_4/H^+$
 - iv. Ethyl alcohol, dry HCl
 - v. Hydroxylamine
 - vi. LiAlH₄/H₃O⁺
 - vii. C_6H_5MgI , then H_2O
 - viii. HCCLi, then H_3O^+
 - ix. CN^{-} , H_2O/HCl
 - x. 2,4-dinitrophenylhydrazine

(12 marks)

- b) Write equations for all steps in the synthesis of the following from acetophenone:
 - i. Ethylbenzene
 - ii. Benzoic acid

iii. 2-phenyl-2-butanol

(8 marks)

QUESTION 3 (20 MARKS)

(a) The sex attractant of the douglas-fir tussock moth has been synthesized in the following way. Give the structure of the sex attractant and all intermediates. 1-heptyne + LiNH₂ \rightarrow A(C₇H₁₁Li) A + 1-chloro-3-bromopropane \rightarrow B(C₁₀H₁₇Cl) B + Mg; then *n*-C₁₀H₂₁CHO; then H₃O⁺ \rightarrow D(C₂₁H₄₀O) D + H₂, Lindlar catalyst \rightarrow E(C₂₁H₄₂O) E + CrO₃, H⁺ \rightarrow F (Sex attractant) (C₂₁H₄₀O)

(12 marks

- (b) Write short chemical reactions on how you can differentiate the following compounds:
 - i. acetone and + acetic acid
 - ii. ethanol and phenol
 - iii. acetophenone and phenylacetaldehyde
 - iv. ethyl phenyl ketone and methyl phenyl ketone
 - v. acetone and chloroform

(8 marks)

QUESTION 4 (20 MARKS)

(a) Give the structural formulas of compounds A through D.

phthalimide + KOH (alc) \longrightarrow A (C₈H₄O₂NK)

 $\mathbf{A} + CH_3CH_2CH_2Br$, heat+ NH₃ \longrightarrow \mathbf{B} (C₁₁H₁₃O₂N)

$$\mathbf{B} + \mathrm{H}_2\mathrm{O}, \mathrm{OH}^{-}, \longrightarrow \mathbf{D} (\mathrm{C}_3\mathrm{H}_9\mathrm{N}) + \mathbf{E}$$

(8 marks)

(b) Give the structures of all the intermediates.

bromobenzene + Mg, ether $\longrightarrow \mathbf{A} (C_6H_5MgBr)$

 \mathbf{A} + ethylene oxide, followed by $\mathbf{H}^+ \longrightarrow \mathbf{B} (\mathbf{C}_8 \mathbf{H}_{10} \mathbf{O})$

 $\mathbf{B} + PBr_3 \longrightarrow \mathbf{D} (C_8H_9Br)$

 $\mathbf{D} + \text{NaCN} \longrightarrow \mathbf{E} (C_9H_9N)$

 $\mathbf{E} + H_2 SO_4, H_2 O, heat \longrightarrow \mathbf{F} (C_9 H_{10} O_2)$

 $\mathbf{F} + SOCl_2 \longrightarrow \mathbf{G} (C_9H_9OCl)$

 \mathbf{G} + anhydrous HF \longrightarrow \mathbf{J} (C₉H₈O)

 $\mathbf{J} + \mathbf{H}_2$, catalyst $\longrightarrow \mathbf{K} (C_9 \mathbf{H}_{10} \mathbf{O})$

 $\mathbf{K} + H_2 \mathbf{SO}_4$, warm $\longrightarrow \mathbf{L} (C_9 H_8)$

(12 marks)

QUESTION 5 (20 MARKS)

- (a) Give structures of the principal organic products of the reaction of *o*-cresol with:
 - i. aqueous NaOH
 - ii. aqueous NaHCO3
 - iii. KMnO₄/heat
 - iv. acetic acid
 - v. acetic anhydride

(10 marks)

- (b) Write an equation for the reaction of ethyl benzoate with
 - i. hot aqueous sodium hydroxide
 - ii. ammonia (heat)
 - iii. methylmagnesium iodide (two equivalents), then H_3O^+
 - iv. lithium magnesium hydride (two equivalents), then H_3O^+

(10 marks)