

SOUTH EASTERN KENYA UNIVERSITY
UNIVERSITY EXAMINATIONS 2016/2017
SECOND SEMESTER EXAMINATION FOR THE DEGREES OF
BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF

EDUCATION (SCIENCE)

SCH 206: ORGANIC ACIDS, AMINES, ESTERS AND PHENOLS
DATE: 18 $^{\text {TH }}$ APRIL, 2017
TIME: 8.00-10.00 A.M

INSTRUCTIONS TO CANDIDATES

(a) Answer question One and any other Two questions
(b) Question 1 carries 30 marks while the other questions carry 20 marks each
(c) Illustrate your answers with well labeled diagrams where appropriate
(d) No written materials allowed.
(e) Write all answers in the booklet provided.
(f) Do not forget to write your Registration Number.
(g) Do not write any answers on this question paper

QUESTION 1 (30 MARKS)

a) Write the structural formula for each of the following compounds:
i. m-iodophenol
ii. isobutyl methyl ketone
iii. 2-butenal
iv. 1,3-diphenyl-2-propen-1-one
v. magnesium 2-chloropropanoate
vi. trimethylacetic acid
vii. 2-methyl-4-ethyloctanoic acid
viii. isopropyl acetate
ix. diphenylamine
x. N, N-dimethylacetamide
xi. acetophenone
b) Neglecting enantiomerism, give structural formulas and IUPAC names for the seven carbonyl compounds of formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$.
c) Give the names of each of the following compounds
(i) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{CHO}$
(ii) $\mathrm{CH}_{3} \mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$
(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(iv) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(v) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
(vi) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(vii) $\mathrm{HCCCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(viii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
(ix)

(x)

(xi)

(xii) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

QUESTION 2 (20 MARKS)

a) Write balanced equations, for the reaction of phenylacetaldehyde with:
i. Tollens' reagent
ii. $\quad \mathrm{CrO}_{3} / \mathrm{H}^{+}$
iii. Cold dilute $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
iv. Ethyl alcohol, dry HCl
v. Hydroxylamine
vi. $\quad \mathrm{LiAlH}_{4} / \mathrm{H}_{3} \mathrm{O}^{+}$
vii. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgI}$, then $\mathrm{H}_{2} \mathrm{O}$
viii. HCCLi , then $\mathrm{H}_{3} \mathrm{O}^{+}$
ix. $\quad \mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}$
x. 2,4-dinitrophenylhydrazine
b) Write equations for all steps in the synthesis of the following from acetophenone:
i. Ethylbenzene
ii. Benzoic acid

QUESTION 3 (20 MARKS)

(a) The sex attractant of the douglas-fir tussock moth has been synthesized in the following way. Give the structure of the sex attractant and all intermediates.

1-heptyne $+\mathrm{LiNH}_{2} \rightarrow \mathbf{A}\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{Li}\right)$
$\mathbf{A}+$ 1-chloro-3-bromopropane $\rightarrow \mathbf{B}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Cl}\right)$
$\mathbf{B}+\mathrm{Mg}$; then $n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{CHO}$; then $\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathbf{D}\left(\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}\right)$
D $+\mathrm{H}_{2}$, Lindlar catalyst $\rightarrow \mathbf{E}\left(\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}\right)$
$\mathbf{E}+\mathrm{CrO}_{3}, \mathrm{H}^{+} \rightarrow \mathbf{F}($ Sex attractant $)\left(\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}\right)$
(12 marks
(b) Write short chemical reactions on how you can differentiate the following compounds:
i. acetone and + acetic acid
ii. ethanol and phenol
iii. acetophenone and phenylacetaldehyde
iv. ethyl phenyl ketone and methyl phenyl ketone
v. acetone and chloroform

QUESTION 4 (20 MARKS)

(a) Give the structural formulas of compounds A through D.
phthalimide $+\mathrm{KOH}($ alc $) \longrightarrow \mathbf{A}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{NK}\right)$
$\mathbf{A}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, heat $+\mathrm{NH}_{3} \longrightarrow \mathbf{B}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}\right)$

$$
\mathbf{B}+\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \longrightarrow \mathbf{D}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}\right)+\mathbf{E}
$$

(b) Give the structures of all the intermediates.

$$
\begin{aligned}
& \text { bromobenzene }+\mathrm{Mg} \text {, ether } \longrightarrow \mathbf{A}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}\right) \\
& \mathbf{A}+\text { ethylene oxide, followed by } \mathrm{H}^{+} \longrightarrow \mathbf{B}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}\right) \\
& \mathbf{B}+\mathrm{PBr}_{3} \longrightarrow \mathbf{D}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}\right) \\
& \mathbf{D}+\mathrm{NaCN} \longrightarrow \mathbf{E}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}\right) \\
& \mathbf{E}+\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, \text { heat } \longrightarrow \mathbf{F}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}\right) \\
& \mathbf{F}+\mathrm{SOCl}_{2} \longrightarrow \mathbf{G}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OCl}\right) \\
& \mathbf{G}+\text { anhydrous } \mathrm{HF} \longrightarrow \mathbf{J}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}\right) \\
& \mathbf{J}+\mathrm{H}_{2}, \text { catalyst } \longrightarrow \mathbf{K}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right) \\
& \mathbf{K}+\mathrm{H}_{2} \mathrm{SO}_{4}, \text { warm } \longrightarrow \mathbf{L}\left(\mathrm{C}_{9} \mathrm{H}_{8}\right)
\end{aligned}
$$

QUESTION 5 (20 MARKS)

(a) Give structures of the principal organic products of the reaction of o-cresol with:
i. aqueous NaOH
ii. aqueous NaHCO_{3}
iii. $\mathrm{KMnO}_{4} /$ heat
iv. acetic acid
v. acetic anhydride
(b) Write an equation for the reaction of ethyl benzoate with
i. hot aqueous sodium hydroxide
ii. ammonia (heat)
iii. methylmagnesium iodide (two equivalents), then $\mathrm{H}_{3} \mathrm{O}^{+}$
iv. lithium magnesium hydride (two equivalents), then $\mathrm{H}_{3} \mathrm{O}^{+}$

