

SOUTH EASTERN KENYA UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (CHEMISTRY)

SCH 205: GROUP THEORY AND ITS CHEMICAL APPLICATIONS

DATE: 12TH APRIL, 2017 TIME: 4.00-6.00 P.M

INSTRUCTIONS TO CANDIDATES

- (a) Answer <u>question One</u> and any other <u>Two questions</u>
- (b) Question 1 carries 30 marks while the other questions carry 20 marks each
- (c) Illustrate your answers with well labeled diagrams where appropriate
- (d) No written materials allowed.
- (e) Write all answers in the booklet provided.
- (f) Do not forget to write your Registration Number.
- (g) Do not write any answers on this question paper
- (h) A table of group theory operations and their contributions is provided
- (i) The Character Table is provided

QUESTION 1 (30 MARKS)

- a) Determine the symmetry elements of the following orbitals
 - i. p_x orbital,
 - ii. dxy orbital

(10 marks)

- b) Determine the symmetry point groups for the following molecules
 - i. cis-Pt(NH₃)₂Cl₂
 - ii. $trans-Pt(NH_3)_2Br_2$
 - iii. CF₂CH₂
 - iv. SO_4^{2-}
 - $v. SO_3$

vi. tetrachloroallene

(10 marks)

- c) For the trans-1,2-dichloroethylene of the C_{2h} symmetry,
 - i. List all symmetry operations for the molecule
 - ii. Write a set of transformation matrices that describe the effect of each symmetry operation in C_{2h} point group on the set of co-ordinates x,y,z for a point
 - iii. Using the terms along the diagonal, obtain as many irreducible representations as possible from the transformation matrices.

(10 marks)

QUESTION 2 (20 MARKS)

What are s, p, and d orbitals of a central atom can be used to form δ hybrid orbitals for an AB₈ molecule having a square antiprism structure. (20 marks)

QUESTION 3 (20 MARKS)

Set up the correlation diagram for the CH₄ molecule. Consider the 2s and 2p orbitals of carbon and the 1s orbital of each hydrogen atom. (20 marks)

QUESTION 4 (20 MARKS)

Find the hybrid orbitals of a central atom in ammonia suitable for forming a set of δ bonds.

(20 marks)

QUESTION 5 (20 MARKS)

The molecule with simple formula N_2F_2 has several isomers; two of these isomers have central nitrogen's, with terminal fluorine on each nitrogen.

- a) Draw the isomers clearly using the Lewis dot diagram.
- b) Determine the symmetry point group of each of the isomers.
- c) For the *cis* isomer determine the number and symmetry species of the Raman and infrared active vibrations. (20 marks)

GROUP THEORY OPERATIONS AND THEIR CONTRIBUTIONS

OPERATION	Е	δ	i	C ₂	C ₃	C ₄	C ₅	C ₆	S ₃	S ₄	S ₅	S ₆	S ₈
F(R)	3	1	-3	-1	0	1	1.618	2	-2	-1	0.382	0	0.414

For any C_n,
$$f(R)=1+2\cos\frac{2\pi}{n}$$

For any S_n,
$$f(R) = -1 + 2\cos\frac{2\pi}{n}$$

