

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF

BACHELOR OF SCIENCE (CHEMISTRY) AND

BACHELOR OF EDUCATION (SCIENCE)

SCH 201: CHEMISTRY OF THE MAIN BLOCK ELEMENTS

DATE: 21ST APRIL, 2017 TIME: 8.00-10.00 A.M

INSTRUCTIONS TO CANDIDATES

- (a) Answer <u>question One</u> and any other <u>Two questions</u>
- (b) Question 1 <u>carries 30 marks</u> while the other questions <u>carry</u> <u>20 marks</u> each
- (c) Illustrate your answers with well labeled diagrams where appropriate

QUESTION 1 (30 MARKS)

- (a) Explain the following, giving appropriate reasons;
 - (i) The oxidising character of elements increases and reducing character decreases as we move from left to right in a period (3 marks)
 - (ii) Metallic character of *p*-block elements decreases along a period but increases down a group.(3 marks)
- (b) Explain the reason for lithium having a greater tendency to form covalent compounds than the other elements in the group. (3 marks)
- (c) Explain why Group II elements are smaller than their Group I counterparts. (3 marks)
- (d) Describe the difference in structure between BeH_2 and CaH_2 . (4 marks)

- (e) The first element in each of the main groups in the periodic table shows anomalous properties when compared with other members of the same group. Discuss this statement with particular reference to Be. (5 marks)
- (f) Give equations to show what reactions occur between CO and:
 - (i)S (2 marks)
 - (ii)Ni (2 marks)
- (g) Explain why nitrogen molecules have the formula N₂, whilst phosphorus has the formula P₄.(5 marks)

QUESTION 2 (20 MARKS)

	(a) Describe how you would make lithium hydride	.	(6 marks)					
	(b) Explain four properties of alkali hydrides.		(4 marks)					
	(c) Explain why Group II elements are harder, an and boiling points than Group I elements.	Explain why Group II elements are harder, and why they have h and boiling points than Group I elements.						
	(d) Explain why compounds of Be are much more compounds.	vhy compounds of Be are much more covalent than other ds.						
	(e) Explain why the halides and hydrides of Be po	lymerize.	(2 marks)					
QU	QUESTION 3 (20 MARKS)							
	(a) List four uses of aluminium.		(4 marks)					
	(b) Explain the following:							
	(i)BF ₃ has no dipole moment, but PF_3 has a sub-	ostantial dipole.	(2 marks)					
	(ii)BF ₃ and BrF ₃ molecules have different shap	bes.	(2 marks)					
	(c) Explain features which make borax a useful principal end of the second seco	imary standard	(2 marks)					
	(d) Account for the reasons why CO_2 is a gas and S	SiO_2 is a solid.	(4 marks)					
	(e) Explain why CCl ₄ is unaffected by water whi	ilst SiCl ₄ is rapidly	hydrolysed. (4 marks)					

(f) Explain why SnI₄ is an orange coloured solid when CCl₄ and SiBr₄ are colourless liquids.
 (2 marks)

QUESTION 4 (20 MARKS)

(a) Explain the properties to account for the abnormal behaviour of carbon

(b) Explain why the dissociation energy of F2 is less than that of Cl2(7 marks)(c) Give reasons to account for stability of clathrates(5 marks)(d) Explain why the vapour of all halogens is coloured(4 marks)

QUESTION 5 (20 MARKS)

(a)	List the main uses of fluorine.	(4 marks)
(b)	Explain the bond angle in OF_2 and give a reason why it is differ	ent in Cl ₂ O. (4 marks)
(c)	State the main uses of Cl ₂ .	(3 marks)
(d)	Explain reasons why the only binary compounds of the nobl fluorides and oxides of Kr, Xe and Rn.	e gases are (4 marks)
(e)	Give equations to show the reactions between sodium and:	
	(i)H ₂ O	(2 marks)
	(ii)Graphite	(2 marks)

period 1	group 1 1.00794 10 100794 10 10 100794 10 10 10 10 10 10 10 10 10 10 10 10 10 1							Th	e Pe	erio	dic ⁻	Tabl	e of	the	Ele	me	nts	18 4.002602 2 He
2	Hydrogen 10 6.941 3 5052 cm 3 Lithium	2 9.012182 Be Beryflum	storric mass or not state rass number Ist ionization energy n kitred chemical symbol			6 ele	electronegativity		alkali metals alkaline metals other metals transition metals		metalloids nonmetals halogens noble gases		14 12,0107 100,0 5m Carbon	15 14.0067 14.0067 305 7 Nitrogen	16 15.9994 0 Oxygen	17 18.998403 9 1910 500 9 Pluonne	Helum 201797 10 Sec. 10 Neon	
3	22,98976 11 45.8 458 11 Na Sodium Petar	24.3050 127 138 127 138 Magnésium Netar	name Iron electron configuration [Ar] 3d1 3 4 5			1º 4s² 6	+1 +1 -2 mor	dation states t common are bold 8	Ianthanoids unknow elements actinoids 9 10 11 12		elements errents have rentheses 12	26.98153 13 575 346 Aluminium Peter Se	28.0855 14 Silicon restrice	30.97696 15 P Phosphorus Peterar	32.065 ma pm 16 Suthar Network	35453 1012 148 Chlotine Peterel	39.948 18 state Argon rector of	
4	39.0983 19 K Potassium	40.078 1.00 Calcium (20) Calcium	44.95591 21 Scandium	47.867 104.0 LSH 22 Titanium (H) 37.44	50.9415 00.9 1.00 00.9 1.00 Vanadium (4) 147 47	51.9962 24 Chromium (49.97 49	54,93804 25 103 1.00 Manganese 143.07 44	55,845 No.5 1.80 Fee Mon Mon Arr	58.93319 27 CODAT Prof 40	58.6934 7913 Law Nickel 1913 ar	63.546 765 1.80 29 Copper 191.97 47	5.38 30 Znc 21cc	69.723 Star Lat 31 Gallium (41.97 47 47	72.64 100 201 32 Germanium 101.07 47 47	74.92160 33 Arsenic Wy M" 47 AP	78.96 34 Selenium prar' er er	79.904 1000 000 35 Bromine Potor' er ef	83.798 36 Krypton with" 47.45
5	85,4678 37 Rb Rubidium	87.62 583 5.89 38 Strontium	88.90585 39 Yarium Marium	91.224 941. LB 40 Zirconium	92,90638 41 NL 16 Nicolum	95.96 m.3 234 42 MO Molybdenum straf 50	(98) 43 TC Technetum	101.07 703 220 Ruthenium	102.9055 45 Rh Rhodium	Palladium	107.8682 47 Agg Silvel Silvel Silvel	Cadmium	114.818 49 Indium poter' to to	118.710 50 Sn Tin	121.760 51 50 2.0 51 Sb Antimony	127.60 52 Tellunum poter" 50.50	126.9044 53	131293 54 Xenon Xenon
6	132,9054 55 Cassium puter	137.327 56 Baa Barlum	174.9668 71 Stas L27 LUBelium	178,49 005 1.00 Hf Hathium (sq. 4" 57 for	190.9478 73 7010 1.50 Tantalum Dister Street	183.84 750 2.36 74 Tungsten (xi) 47 50 50	186.207 75 Ree Rhenkum	190.23 0 23 0 35 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	192.217 min 2.00 Ir Irdium	195.084 78 Pt Platinum	196.9665 79 AU Gold	200.59 80 Hg Mercory	204.3833 81 584 147 Thallium psg.et" of tener	207.2 108 20 Pb Lead	208.9804 83 780 202 Bismuth	(210) 84	(210) 85 At Astatine	(220) 86 Rn Radon
7	(223) 87 1000 0.70 87 Francium 100 100	(226) 88 xm3 9m 88 Radium mq hr	(262) 103 Lewrencium	(261) 104 Rf Rutherfordium	(262) 105 Db Dubnium	(266) 106 Sg Seatorgium	(264) 107 Bh Bohrium	(277) 108 Hassium	(268) 109 Mt Meitnerium	(271) 110 DS Darmstadium	(272) 111 Rg Roenhgimium	(285) 112 Copernicium	⁽²⁸⁴⁾ 113 Uut Ununatium	(289) 114 Fl Pierovium	(288) 115 Ununpendium	(292) 116 LV Livermorium	117 Uus Ununseptum	(294) 118 Uuunoctium
Image: Notice Image: N																		