

SOUTH EASTERN KENYA UNIVERSITY <u>UNIVERSITY EXAMINATIONS 2016/2017</u> SECOND SEMESTER EXAMINATION FOR THE DEGREES OF BACHELOR OF SCIENCE (EDUCATION, CHEMISTRY, PUBLIC HEALTH AND GEOLOGY)

SCH 103: GENERAL AND PHYSICAL CHEMISTRY

DATE: 10 TH APRIL, 2017

TIME: 4.00-6.00 P.M

INSTRUCTIONS TO CANDIDATES

- (a) Answer <u>question One</u> and any other <u>Two questions</u>
- (b) Question 1 carries 30 marks while the other questions carry 20 marks each
- (c) Illustrate your answers with well label diagrams where applicable

Constants

 $R = 0.0820575 (L atm)/(mol K); 8.314 Jmol^{-1}K^{-1}; 0.08314Lbarmol^{-1}K^{-1}$

Boltzmann's constant (k) = $1.3 81 \times 10^{-23} \text{JK}^{-1}$

Faraday constant = 96500 Cmol⁻¹

QUESTION 1 [30 marks]

- a. List three properties of gases.
- b. State Boyle's law
- c. Graphically represent Boyle's law for isotherms for an ideal gas and clearly show the effect of increasing temperature from T₁ to T₂
 [3 marks]
- d. Define the term:

[3 marks]

[2 marks]

i. Molalit	y
------------	---

ii. Buffer solution

iv.	Root mean square speed mean	[8 marks]
-----	-----------------------------	-----------

- e. i. Derive the Van der waals equation for n moles of a gas. [4 marks]
 ii. Explain the terms a and b as used in the above equation, e (i). [2 marks]
- f. One mole of Nitrogen gas at 27 °C occupies 30.0 Litres. Calculate the Pressure of the gas using;
 i. Ideal gas equation [3 marks]
 ii. Van der waals equation (a= 1.387 L²atmmol⁻²; b=0.0387 Lmol⁻¹) [5 marks]

QUESTION 2 [20 marks]

a.	According to Maxwell-Boltzmann distribution of a gas, show that;	[10 marks]
	$PV = \frac{1}{3}nN_AmC^2$	
b.	Given CO (g) molecules at 25 °C, find:	
	(C= 12; O= 16)	

i. most probable speed	[3 marks]
ii. mean speed	[3 marks]
iii. root mean square speed in Km/h	[4 marks]

QUESTION 3 [20 marks]

- a. What is the molality of a 3.50 M H_2SO_4 solution with density 1.23 g/ml and 98 % pure? (H=1, S= 32, O= 16) [6 marks]
- b. The heat of formation of benzene is given by $6C_{(s)} + 3 H_{2(g)} \rightarrow C_6 H_{6(L)} \quad \Delta H_f = +49 \text{ kJ/mol}$ Given $\Delta H_f CO_{2(g)} = -393.5 \text{ KJ/mol}$ $\Delta H_f H_2O_{(L)} = -286 \text{ KJ/mol}$

$\Delta H_V H_2 O(g) = -241.8 \text{ kJ/mol}$	
$\Delta H_v C_6 H_6 _{(g)} = 33.6 \text{ kJ/mol}$	
Calculate the;	
i. heat of combustion of benzene	[5 marks]
ii. heat for the reaction $C_6H_6_{(g)}+15/2 O_2(g) \rightarrow 6CO_2(g)+3H_2O(g)$	[5 marks]

c). Name the acid and base in the chemical reaction below and explain. [5 marks]

 $NH_3 + 2H_2O \rightarrow NH_4OH + H_3O^+$

QUESTION 4 [20 marks]

- a. Calculate the vapour pressure of pentane (mw=72) containing 250 g in a mix with 1200 g of heptane (mw = 100 g) at 20 °C. The vapour pressure of the mixture and heptane are 112 mmHg and 36 mmHg respectively. [10 marks]
- b. Find the solubility of AgCl in mol/L in a solution of 0.15 M MgCl_{2.} K_{sp} for AgCl is 1.8×10^{-10} [7 marks]
- c. Find $[H^+]$ in 0.003M NaOH.

QUESTION 5 [20 marks]

a. The K_{sp} of Ca(OH)₂ is 7.9×10^{-6} find the P_H of the saturated solution of Ca(OH)₂. [10 marks]

b. An electrochemical cell consists of an Fe^{2+}/Fe half cell with $[\text{Fe}^{2+}] = 0.031$ M and a Sn^{2+}/Sn halfcell with unknown concentration $[\text{Sn}^{2+}]$. The electromotive force of the cell was measured at 25°C to be 0.35 V.

 $Ni^{2+}(aq) + 2e \rightarrow Ni(s)$ $E^{o}_{cell} = -0.24 V$

 $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$ $E^{o}_{cell} = +0.34 \text{ V}$

- i. Write down the cell representation [2 marks]
- ii. Calculate the concentration of Sn^{2+} in the Sn^{2+}/Sn half-cell [5 marks]
- iii. Calculate the equilibrium constant for the reaction [3 marks]

[3 marks]