

SOUTH EASTERN KENYA UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017 SECOND SEMESTER EXAMINATION FOR THE DEGREES OF BACHELOR OF SCIENCE (EDUCATION, CHEMISTRY, PUBLIC HEALTH AND GEOLOGY)

SCH 103: GENERAL AND PHYSICAL CHEMISTRY

DATE: 10 TH APRIL, 2017
TIME: 4.00-6.00 P.M

INSTRUCTIONS TO CANDIDATES

(a) Answer question One and any other Two questions
(b) Question 1 carries $\mathbf{3 0}$ marks while the other questions carry $\mathbf{2 0}$ marks each
(c) Illustrate your answers with well label diagrams where applicable

Constants

$\mathbf{R}=0.0820575(\mathrm{~L}$ atm $) /(\mathrm{mol} \mathrm{K}) ; 8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} ; \mathbf{0} .08314 \mathrm{Lbarmol}^{-1} \mathrm{~K}^{-1}$
Boltzmann's constant $(\mathrm{k})=1.381 \times 10^{-23} \mathrm{JK}^{-1}$
Faraday constant $=96500 \mathrm{Cmol}^{-1}$
QUESTION 1 [30 marks]
a. List three properties of gases.
b. State Boyle's law
c. Graphically represent Boyle's law for isotherms for an ideal gas and clearly show the effect of increasing temperature from T_{1} to T_{2}
[3 marks]
d. Define the term:
i. Molality
ii. Buffer solution
iii. Salt
iv. Root mean square speed mean
e. i. Derive the Van der waals equation for n moles of a gas.
ii. Explain the terms a and b as used in the above equation, e (i).
[2 marks]
f. One mole of Nitrogen gas at $27^{\circ} \mathrm{C}$ occupies 30.0 Litres. Calculate the Pressure of the gas using;
i. Ideal gas equation
ii. Van der waals equation $\left(a=1.387 \mathrm{~L}^{2}\right.$ atmmol $\left.{ }^{-2} ; b=0.0387 \mathrm{Lmol}^{-1}\right)$

QUESTION 2 [20 marks]

a. According to Maxwell-Boltzmann distribution of a gas, show that;
[10 marks]
$P V=1 / 3 n N_{A} m C^{2}$
b. Given CO (g) molecules at $25^{\circ} \mathrm{C}$, find:

$$
(\mathrm{C}=12 ; \mathrm{O}=16)
$$

i. most probable speed
ii. mean speed
iii. root mean square speed in Km / h

QUESTION 3 [20 marks]

a. What is the molality of a $3.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution with density $1.23 \mathrm{~g} / \mathrm{ml}$ and 98% pure? $(\mathrm{H}=1, \mathrm{~S}=$ $32, \mathrm{O}=16$)
b. The heat of formation of benzene is given by
$6 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~L})} \quad \Delta \mathrm{H}_{\mathrm{f}}=+49 \mathrm{~kJ} / \mathrm{mol}$
Given
$\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2(\mathrm{~g})}=-393.5 \mathrm{KJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}=-286 \mathrm{KJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{V}} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-241.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{v}} \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}=33.6 \mathrm{~kJ} / \mathrm{mol}$
Calculate the;
i. heat of combustion of benzene
ii. heat for the reaction
[5 marks]
$\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c). Name the acid and base in the chemical reaction below and explain.
[5 marks]
$\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{+}$

QUESTION $4[20$ marks]

a. Calculate the vapour pressure of pentane ($\mathrm{mw}=72$) containing 250 g in a mix with 1200 g of heptane ($\mathrm{mw}=100 \mathrm{~g}$) at $20^{\circ} \mathrm{C}$. The vapour pressure of the mixture and heptane are 112 mmHg and 36 mmHg respectively.
b. Find the solubility of AgCl in $\mathrm{mol} / \mathrm{L}$ in a solution of $0.15 \mathrm{M} \mathrm{MgCl}_{2 .} \mathrm{K}_{\text {sp }}$ for AgCl is 1.8×10^{-10}
[7 marks]
c. Find $\left[\mathrm{H}^{+}\right]$in 0.003 M NaOH .
[3 marks]

QUESTION 5 [20 marks]

a. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 7.9×10^{-6} find the P_{H} of the saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$. [10 marks]
b. An electrochemical cell consists of an $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half cell with $\left[\mathrm{Fe}^{2+}\right]=0.031 \mathrm{M}$ and a $\mathrm{Sn}^{2+} / \mathrm{Sn}$ halfcell with unknown concentration $\left[\mathrm{Sn}^{2+}\right]$. The electromotive force of the cell was measured at $25^{\circ} \mathrm{C}$ to be 0.35 V .

$$
\begin{array}{lr}
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Ni}(\mathrm{~s}) & \mathrm{E}_{\text {cell }}^{0}=-0.24 \mathrm{~V} \\
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Cu}(\mathrm{~s}) & \mathrm{E}_{\text {cell }}^{\mathrm{o}}=+0.34 \mathrm{~V}
\end{array}
$$

i. Write down the cell representation
ii. Calculate the concentration of Sn^{2+} in the $\mathrm{Sn}^{2+} / \mathrm{Sn}$ half-cell
iii. Calculate the equilibrium constant for the reaction

