

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREES OF BACHELOR OF SCIENCE (CHEMISTRY)

SCA 201: QUANTITATIVE ANALYSIS

DATE: APRIL, 2017 TIME:

INSTRUCTIONS TO CANDIDATES

- (a) Answer <u>question One</u> and any other <u>Two questions</u>
- (b)Question 1 <u>carries 30 marks</u> while the other questions <u>carry</u> <u>20 marks</u> each

(c) Illustrate your answers with well label diagrams where applicable

Question 1	[30 marks]
a) Define the following terms	
i) Population	
ii) Sample	
iii) Laboratory sample	
	[3 marks]
b) State five conditions that should be fulfilled during sample preparation.	
	[5 marks]

SEKU/01-04/2016/2017

c) Identify **THREE** sources of systematic errors and give **TWO** examples for each.

[6 marks]

- d) The sodium ion level in urine specimen was measured using an ion-selective electrode. The following values were obtained: 102, 97, 99, 98, 101,106 mM. Calculate the confidence limits and confidence interval at 99 % confidence level for the sodium ion concentration.
- e) Explain the difference between:
 - i) Colloid and crystalline precipitate
 - ii) Precipitation and co-precipitation
 - iii) Occlusion and mixed crystal formation

Question 2

[20 marks]

[6 marks]

- a) Identify the acid on the left and its conjugate base on the right in the following equations
 - i) HOCl + H_2O \longrightarrow H_3O^+ + $OCl^$ ii) NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+ iii) PO_4^{3-} + $H_2PO_4^ \longrightarrow$ $2HPO_4^-$

[6 marks]

b) Ammoniacal nitrogen can be determined by treatment of the sample with chloroplatinic acid; the product is a slightly soluble ammonium chloroplatinate

$$H_2PtCl_{6(aq)} + 2NH_4^+(aq) \longrightarrow (NH_4)_2PtCl_{6(s)} + 2H_{(aq)}^+$$

The precipitate decomposes on ignition, yielding metallic platinum and gaseous products

$$(NH_4)_2 PtCl_{6(s)} \longrightarrow Pt_{(s)} + 2NH_{3(g)} + 2Cl_{2(g)} + 2HCl_{(g)}$$

Calculate the percentage of ammonia in a sample if 0.2115 g gave rise to 0.4693 g of platinum. (RAM N = 1, H = 1, Pt = 195.08) [8 marks]

c) Calculate the pH during the titration of 50.00 mL of 0.0500 M NaOH with 24.50 mL of 0.1000 M HCl at 25 °C. (Kw = 1.0×10^{-14}) [6 marks]

SEKU/01-04/2016/2017

Question 3

- a) The atomic absorption method for the determination of the amount of iron present in jet engine oil was found by pooling 30 triplicate analyses to have a standard deviation $s = 3.6 \ \mu g \ Fe/mL$. If s is a good estimate of σ , calculate the 95 and 99 % confidence interval for the result 18.5 $\ \mu g \ Fe/mL$ if it was based on:
 - i) A single analysis
 - ii) The mean of four analyses

[10 marks]

b) The data in the table below were obtained during a colorimetric determination of glucose in blood serum

Absorbance, A
0.002
0.150
0.294
0.434
0.570
0.704

i) Assuming a linear relationship between the variables, find the least-squares estimates of the slope and intercept and hence the least-squares equation for the relationship between the variables.

ii) Calculate the standard deviation of slope and intercept.

[10 marks]

a)

- i. Calculate the weight of silver nitrate needed to convert 2.33 g of sodium carbonate to silver carbonate (relative atomic mass Na = 23, C = 12, O = 16, Ag = 108).
- ii. Calculate the weight of silver carbonate formed.

[10 marks]

b) A 100.00 mL sample of spring water was treated to convert any iron present to Fe^{2+} . Addition of 25.00 mL of 0.002517 M K₂Cr₂O₇ resulted in the reaction

 $6Fe^{2+} + Cr_2O_7^{2-} \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ The excess K₂Cr₂O₇ was back titrated with 8.53 mL of 0.00949 M Fe²⁺ solution. Calculate the concentration of iron in the sample in parts per million. [10 marks]

Question 5	[20 marks]
a)	

i) Define a primary standard	[1 mark]
ii) State FIVE requirements of a primary standard	[5 marks]

b) A 0.8040 g sample of an iron ore is dissolved in an acid. The iron is then reduced to Fe²⁺ and titrated with 47.22 mL of 0.02242 M KMnO₄ solution. The reaction of the analyte with the reagent is described by the equation

 $MnO^{4-} + 5Fe^{2+} + 8H^{+} \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

Calculate the results of this analysis in:

ii)% Fe_3O_4 (RMM $Fe_3O_4 = 231.54 \text{ g/mol}$) [5 marks]

c) Explain Four advantages of gravimetric titrations over volumetric titrations

[4 marks]

SEKU/01-04/2016/2017